login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113677 a(n) = (2*n+1)!*(2*n-2)!/(2*((n-1)!)*(n!)^2), n=1,2,... . 0
3, 30, 840, 37800, 2328480, 181621440, 17124307200, 1892235945600, 239683219776000, 34226763784012800, 5438943917677670400, 951815185593592320000, 181869917001114101760000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

If the sequence is defined by the gamma function, which extends the factorial, then the limit as z approaches zero of a(z) is -1/4 and so a(0)=-1/4 in that sense. - Michael Somos, Sep 02 2006

LINKS

Table of n, a(n) for n=1..13.

FORMULA

E.g.f., in Maple notation: sum(a(n)*x^n/n!, n=1..infinity)= 1/2*(EllipticK(4*x^(1/2))-2*EllipticE(4*x^(1/2)))/Pi; Integral representation as n-th moment of a positive function on a positive half axis: a(n)=int(x^n*(1/16)*1/Pi^(3/2)/x^(1/2)*exp(-1/32*x)*BesselK(1, 1/32*x), x=0..infinity), n=1, 2, ... . Note that a(0) is not defined.

G.f.: A(x)=y, with A(0)=-1/4, satisfies 0 = 12*y +(1 -32*x)*y' -16*x^2*y''. - Michael Somos, Sep 02 2006

E.g.f.: A(x)=y, with A(0)=-1/4, satisfies 0 = 12*y +(1 -32*x)*y' +(x -16*x^2)*y''. - Michael Somos, Sep 02 2006

E.g.f.: A(x), with A(0)=-1/4, satisfies 0 = 120*(s6*s0 +54*s5*s1 -945*s4*s2 +1050*s3*s3) +(s6*s2 -16*s5*s3 +18*s4*s4) where s0=A(x), s1=s0', s2=s1', ..., s6=s5'. - Michael Somos, Sep 02 2006

PROG

(PARI) {a(n)=if(n<1, 0, (2*n+1)!*(2*n-2)!/2/(n-1)!/n!^2)} /* Michael Somos, Sep 02 2006 */

(PARI) {a(n)=local(A, B, C); if(n<1, 0, A = sum(k=1, sqrtint(n), 2*x^k^2, 1+x*O(x^n))^2; B = sum(k=1, n, (k%2)*k*x^k/(1-x^(2*k)), x*O(x^n))/A^2; C = sum(k=1, n, 8*x^(2*k)/(1+x^(2*k))^2, 1+x*O(x^n))/A; n!*polcoeff(subst((A-2*C)/4, x, serreverse(B)), n))} /* Michael Somos, Sep 23 2006 */

CROSSREFS

Sequence in context: A012007 A065753 A255926 * A306092 A174549 A184575

Adjacent sequences:  A113674 A113675 A113676 * A113678 A113679 A113680

KEYWORD

nonn

AUTHOR

Karol A. Penson, Nov 04 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 15 18:22 EDT 2019. Contains 327082 sequences. (Running on oeis4.)