login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113677
a(n) = (2*n+1)!*(2*n-2)!/(2*((n-1)!)*(n!)^2), n=1,2,... .
0
3, 30, 840, 37800, 2328480, 181621440, 17124307200, 1892235945600, 239683219776000, 34226763784012800, 5438943917677670400, 951815185593592320000, 181869917001114101760000
OFFSET
1,1
COMMENTS
If the sequence is defined by the gamma function, which extends the factorial, then the limit as z approaches zero of a(z) is -1/4 and so a(0)=-1/4 in that sense. - Michael Somos, Sep 02 2006
FORMULA
E.g.f., in Maple notation: sum(a(n)*x^n/n!, n=1..infinity)= 1/2*(EllipticK(4*x^(1/2))-2*EllipticE(4*x^(1/2)))/Pi; Integral representation as n-th moment of a positive function on a positive half axis: a(n)=int(x^n*(1/16)*1/Pi^(3/2)/x^(1/2)*exp(-1/32*x)*BesselK(1, 1/32*x), x=0..infinity), n=1, 2, ... . Note that a(0) is not defined.
G.f.: A(x)=y, with A(0)=-1/4, satisfies 0 = 12*y +(1 -32*x)*y' -16*x^2*y''. - Michael Somos, Sep 02 2006
E.g.f.: A(x)=y, with A(0)=-1/4, satisfies 0 = 12*y +(1 -32*x)*y' +(x -16*x^2)*y''. - Michael Somos, Sep 02 2006
E.g.f.: A(x), with A(0)=-1/4, satisfies 0 = 120*(s6*s0 +54*s5*s1 -945*s4*s2 +1050*s3*s3) +(s6*s2 -16*s5*s3 +18*s4*s4) where s0=A(x), s1=s0', s2=s1', ..., s6=s5'. - Michael Somos, Sep 02 2006
a(n) ~ 2^(4*n - 3/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n)). - Vaclav Kotesovec, Jun 26 2022
PROG
(PARI) {a(n)=if(n<1, 0, (2*n+1)!*(2*n-2)!/2/(n-1)!/n!^2)} /* Michael Somos, Sep 02 2006 */
(PARI) {a(n)=local(A, B, C); if(n<1, 0, A = sum(k=1, sqrtint(n), 2*x^k^2, 1+x*O(x^n))^2; B = sum(k=1, n, (k%2)*k*x^k/(1-x^(2*k)), x*O(x^n))/A^2; C = sum(k=1, n, 8*x^(2*k)/(1+x^(2*k))^2, 1+x*O(x^n))/A; n!*polcoeff(subst((A-2*C)/4, x, serreverse(B)), n))} /* Michael Somos, Sep 23 2006 */
CROSSREFS
Sequence in context: A012007 A065753 A255926 * A306092 A174549 A363426
KEYWORD
nonn
AUTHOR
Karol A. Penson, Nov 04 2005
STATUS
approved