login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fibonacci(p-J(p,5)) mod p^2, where p is the n-th prime and J is the Jacobi symbol.
10

%I #43 Mar 05 2022 14:12:29

%S 2,3,5,21,55,39,272,57,345,754,775,481,1599,1677,752,1484,590,2928,

%T 469,3905,4234,3871,1743,445,3589,9797,2266,2568,2834,6780,1651,8384,

%U 7946,16263,17880,9060,6908,26080,7348,22490,31146,23711,17954,5983

%N Fibonacci(p-J(p,5)) mod p^2, where p is the n-th prime and J is the Jacobi symbol.

%C A value of 0 indicates a Wall-Sun-Sun prime. No such prime is currently known. - _Felix Fröhlich_, Jun 07 2014

%H T. D. Noe, <a href="/A113650/b113650.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Wall-Sun-SunPrime.html">Wall-Sun-Sun Prime</a>

%t a[n_]:= ( p=Prime[n];Mod[Fibonacci[p-JacobiSymbol[p, 5]], Power[p, 2]]); Table[a[n], {n,1,50}] (* _Javier Rivera Romeu_, Mar 03 2022 *)

%o (PARI) a(n)=my(p=prime(n));lift(Mod([1,1;1,0]^(p-kronecker(p,5)),p^2)[1,2]) \\ _Charles R Greathouse IV_, Oct 31 2011

%o (Sage)

%o def a(n):

%o p = Primes().unrank(n-1)

%o return fibonacci(p-jacobi_symbol(p, 5))%pow(p, 2)

%o for n in range(1, 100): print(a(n), end=", ") # _Javier Rivera Romeu_, Mar 04 2022

%Y Cf. A113649.

%K nonn

%O 1,1

%A _Eric W. Weisstein_, Nov 03 2005