Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jul 01 2024 02:33:35
%S 2,28,1060,39612,1336090,42157238,1271530648,37178373556,
%T 1062895088910,29878892909030,828999068943506,22762324818835316,
%U 619715756464336328,16753554900339748756,450233110894196298638,12038074430656287496566,320451759639384414082274,8497567719126134980044214
%N Sum of the first 5^n primes.
%C Using the program at the link, computation of the next term, a(15), would require generating a list of the first 31 * 10^9 8-byte primes (file size: 250 GB). Given runtimes of 0.06, 0.13, 0.63, 7.5, 64.6, 375.38, and 2092.56 seconds on a 2.53 GHz P4 processor for a(8) through a(14), respectively, the program in the link will sum the first 5^15 primes in 3.5 hours. [Comment reworded by _Jon E. Schoenfield_, Aug 01 2015]
%H Amiram Eldar, <a href="/A113633/b113633.txt">Table of n, a(n) for n = 0..24</a> (calculated using Kim Walisch's primesum program)
%H Cino Hilliard, <a href="http://groups.msn.com/First300billionprimes/sumfirst5nprimes.msnw">SumPrimes</a>. [broken link]
%H Kim Walisch, <a href="https://github.com/kimwalisch/primesum">Sum of the primes below x (primesum)</a>.
%F a(n) = A007504(A000351(n)). - _Michel Marcus_, Aug 01 2015
%e The first 5^1 primes add up to 28.
%t t = {}; c = 1; k = 3; s = 2; Do[ While[c < 5^n, If[PrimeQ[k], c++; s += k]; k += 2]; Print@s; AppendTo[t, s], {n, 0, 10}]; t (* _Robert G. Wilson v_, Jan 17 2006 *)
%Y Cf. A000351, A007504, A055680, A099825, A099826, A113634, A113635.
%K nonn
%O 0,1
%A _Cino Hilliard_, Jan 15 2006
%E a(15) onwards from _Amiram Eldar_, Jul 01 2024