login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,m) read by rows: T(n,m) = (n - m)*(n - m + 1)*m*(m + 1)/4 + 1.
4

%I #18 Sep 08 2022 08:45:23

%S 1,1,1,1,2,1,1,4,4,1,1,7,10,7,1,1,11,19,19,11,1,1,16,31,37,31,16,1,1,

%T 22,46,61,61,46,22,1,1,29,64,91,101,91,64,29,1,1,37,85,127,151,151,

%U 127,85,37,1,1,46,109,169,211,226,211,169,109,46,1

%N Triangle T(n,m) read by rows: T(n,m) = (n - m)*(n - m + 1)*m*(m + 1)/4 + 1.

%C From _Paul Barry_, Jan 07 2009: (Start)

%C This triangle follows a general construction method as follows: Let a(n) be an integer sequence with a(0)=1, a(1)=1. Then T(n,k,r) := [k<=n](1+r*a(k)*a(n-k)) defines a symmetrical triangle.

%C Row sums are n + 1 + r*Sum_{k=0..n} a(k)*a(n-k) and central coefficients are 1+r*a(n)^2.

%C Here a(n) = C(n+1,2) and r=1.

%C Row sums are A154322 and central coefficients are A154323. (End)

%H G. C. Greubel, <a href="/A113582/b113582.txt">Rows n=0..100 of triangle, flattened</a>

%F T(n,m) = (n - m)*(n - m + 1)*m*(m + 1)/4 + 1.

%e {1},

%e {1, 1},

%e {1, 2, 1},

%e {1, 4, 4, 1},

%e {1, 7, 10, 7, 1},

%e {1, 11, 19, 19, 11, 1},

%e {1, 16, 31, 37, 31, 16, 1},

%e {1, 22, 46, 61, 61, 46, 22, 1},

%e {1, 29, 64, 91, 101, 91, 64, 29, 1},

%e {1, 37, 85, 127, 151, 151, 127, 85, 37, 1},

%e {1, 46, 109, 169, 211, 226, 211, 169, 109, 46, 1}

%t t[n_, m_] = (n - m)*(n - m + 1)*m*(m + 1)/4 + 1; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]//Flatten

%o (Magma) /* As triangle: */ [[(n-m)*(n-m+1)*m*(m+1)/4+1: m in [0..n]]: n in [0.. 15]]; // _Vincenzo Librandi_, Sep 12 2016

%o (PARI) for(n=0,15, for(k=0,n, print1((n-k)*(n-k+1)*k*(k+1)/4 + 1, ", "))) \\ _G. C. Greubel_, Aug 31 2018

%K nonn,tabl,easy

%O 1,5

%A _Roger L. Bagula_, Aug 25 2008