Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 17 2017 22:53:48
%S 32,3042,375131,46137317,5674515856,697919312217,85838400887831,
%T 10557425389890242,1298477484555612931,159702173174950499517,
%U 19642068823034355828656,2415814763060050816424417
%N Maximum element in the continued fraction for F(5n+3)^5/F(5n+2)^5 where F=A000045 are Fibonacci numbers.
%D B. Cloitre, On rational sequences yielding continued fractions with unbounded coefficients, in preparation
%H G. C. Greubel, <a href="/A113500/a113500.txt">Table of n, a(n) for n = 0..475</a>
%F a(n) = 2*L(10*n+4) + L(10*n+5) + (-1)^n*7 - 1, where L(k) denotes the k-th Lucas number L(k) = F(k-1) + F(k+1), for n >= 0.
%F Empirical g.f.: (x^4-140*x^3-965*x^2+894*x-32) / ((x-1)*(x+1)*(x^2-123*x+1)). - _Colin Barker_, Jun 17 2013
%t Table[2*LucasL[10*n + 4] + LucasL[10*n + 5] + 7*(-1)^n - 1, {n,0,50}] (* _G. C. Greubel_, Mar 13 2017 *)
%o (PARI) a(n)=vecmax(contfrac(fibonacci(5*n+3)^5/fibonacci(5*n+2)^5))
%Y Cf. A000045.
%K nonn
%O 0,1
%A _Benoit Cloitre_, Jan 10 2006