%I #15 Jan 03 2020 05:31:27
%S 1,2,3,3,5,7,5,11,17,23,5,11,17,23,29,7,37,67,97,127,157,35,65,95,125,
%T 155,185,215,635,707,779,851,923,995,1067,1139,635,707,779,851,923,
%U 995,1067,1139,1211,199,409,619,829,1039,1249,1459,1669,1879,2089,3841,3973
%N Triangle read by rows: n-th row is the smallest set of n numbers in arithmetic progression with the same number of divisors.
%C In this sequence "smallest" means that the last term of the arithmetic progression is minimized and if there is still a choice then we minimize the common difference of the arithmetic progression.
%H OEIS wiki, <a href="https://oeis.org/wiki/Primes_in_arithmetic_progression">Primes in arithmetic progression</a>.
%F T(n,k) = A090547(n) + (k-1)*A090549(n). - _R. J. Mathar_, May 11 2007
%e From _M. F. Hasler_, Jan 02 2020: (Start)
%e The triangle starts
%e n | row n
%e ---+------------
%e 1 | 1,
%e 2 | 2, 3,
%e 3 | 3, 5, 7,
%e 4 | 5, 11, 17, 23,
%e 5 | 5, 11, 17, 23, 29,
%e 6 | 7, 37, 67, 97, 127, 157,
%e 7 | 35, 65, 95, 125, 155, 185, 215,
%e 8 | 635, 707, 779, 851, 923, 995, 1067, 1139,
%e 9 | 635, 707, 779, 851, 923, 995, 1067, 1139, 1211,
%e 10 | 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089,
%e 11 | 3841, 3973, ...
%e Most rows so far consist of primes with 2 divisors, rows 7, 8, 9 and 11 have squarefree semiprimes with 4 divisors.
%e Row 10 is A033168; also row 10 of A086786, A133276 and A133277. (End)
%Y Cf. A086786, A090547, A090548, A090549.
%K nonn,tabl
%O 1,2
%A _David Wasserman_, Jan 08 2006