This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113313 Riordan array (1-2x,x/(1-x)). 1
 1, -2, 1, 0, -1, 1, 0, -1, 0, 1, 0, -1, -1, 1, 1, 0, -1, -2, 0, 2, 1, 0, -1, -3, -2, 2, 3, 1, 0, -1, -4, -5, 0, 5, 4, 1, 0, -1, -5, -9, -5, 5, 9, 5, 1, 0, -1, -6, -14, -14, 0, 14, 14, 6, 1, 0, -1, -7, -20, -28, -14, 14, 28, 20, 7, 1, 0, -1, -8, -27, -48, -42, 0, 42, 48, 27, 8, 1, 0, -1, -9, -35 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums are (1,-1,0,0,0,...) = 2*C(0,n) - C(1,n). Diagonal sums are -2*0^n - F(n-4) with g.f. (1 - 3x + 2x^2) / (1 - x - x^2). Inverse of A113310. LINKS FORMULA T(n, k) = C(n-1, n-k) - 2*C(n-2, n-k-1). exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(-x + x^3/3!) = -x - 2*x^2/2! - 2*x^3/3! + 5*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014 EXAMPLE The triangle T(n, k) begins: n\k 0  1  2   3   4   5  6  7  8 9 10 ... 0:  1 1: -2  1 2:  0 -1  1 3:  0 -1  0   1 4:  0 -1 -1   1   1 5:  0 -1 -2   0   2   1 6:  0 -1 -3  -2   2   3  1 7:  0 -1 -4  -5   0   5  4  1 8:  0 -1 -5  -9  -5   5  9  5  1 9:  0 -1 -6 -14 -14   0 14 14  6 1 10: 0 -1 -7 -20 -28 -14 14 28 20 7  1 ... Reformatted. - Wolfdieter Lang, Jan 06 2015 CROSSREFS Sequence in context: A045634 A141702 A259896 * A074871 A182641 A319020 Adjacent sequences:  A113310 A113311 A113312 * A113314 A113315 A113316 KEYWORD easy,sign,tabl AUTHOR Paul Barry, Oct 25 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 22:47 EDT 2019. Contains 328315 sequences. (Running on oeis4.)