login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113291
a(n) = A113290(n,1)/(n+1) for n>=0, where A113290 is the matrix log of triangle A113287.
3
0, 0, 0, 1, -2, 4, -7, 13, -24, 48, -99, 221, -512, 1268, -3247, 8773, -24400, 70896, -211347, 653541, -2068472, 6755684, -22541135, 77305981, -270435640, 969413776, -3539893923, 13212871629, -50180362320, 194412817844, -765590169935, 3070433223317
OFFSET
0,5
FORMULA
G.f. satisfies: A(x) = x^3*((2+x)/(1+x) + (1+x)*A'(x))/(2+3*x+2*x^2). a(n+3) = (-1)^n*Sum_{k=0..n} Sum{j=0..[k/2]} (k-j)!/(k-2*j)! for n>=0. a(n+3) = -a(n+2) + (-1)^n*A072374(n) for n>=1.
PROG
(PARI) a(n)=if(n<3, 0, (-1)^(n-3)*sum(k=0, n-3, sum(j=0, k\2, (k-j)!/(k-2*j)!)))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 23 2005
STATUS
approved