Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 May 19 2017 02:37:22
%S 1,5,266,268722,4682453347,2978988815561863,722638800922610642480852,
%T 22529984108212742763058965679103268,
%U 57286470055793196612331429228839529219232484069
%N Ascending descending base exponent transform of squares (A000290).
%C A003101 is the ascending descending base exponent transform of natural numbers A000027. The ascending descending base exponent transform applied to the Fibonacci numbers is A113122; applied to the tribonacci numbers is A113153; applied to the Lucas numbers is A113154. The smallest prime in this sequence is a(2) = 5. What is the next prime? What is the first square value after 1?
%H G. C. Greubel, <a href="/A113257/b113257.txt">Table of n, a(n) for n = 1..30</a>
%F a(n) = Sum_{i=1..n} (i^2)^((n-i+1)^2).
%F a(n) = Sum_{i=1..n} (A000290(i))^(A000290(n-i+1)).
%e a(1) = 1 because (1^2)^(1^2) = 1^1 = 1.
%e a(2) = 5 because (1^2)^(4^1) + (4^1)^(1^4) = 1^4 + 4^1 = 5.
%e a(3) = 266 = 1^9 + 4^4 + 9^1.
%e a(4) = 268722 = 1^16 + 4^9 + 9^4 + 16^1.
%e a(5) = 4682453347 = 1^25 + 4^16 + 9^9 + 16^4 + 25^1.
%e a(6) = 2978988815561863 = 1^36 + 4^25 + 9^16 + 16^9 + 25^4 + 36^1.
%e a(7) = 722638800922610642480852 = 1^49 + 4^36 + 9^25 + 16^16 + 25^9 + 36^4 + 49^1.
%e a(8) = 22529984108212742763058965679103268 = 1^64 + 4^49 + 9^36 + 16^25 + 25^16 + 36^9 + 49^4 + 64^1.
%e a(9) = 57286470055793196612331429228839529219232484069 = 1^81 + 4^64 + 9^49 + 16^36 + 25^25 + 36^16 + 49^9 + 64^4 + 81^1.
%t Table[Sum[(k^2)^((n - k + 1)^2), {k, 1, n}], {n, 1, 10}] (* _G. C. Greubel_, May 18 2017 *)
%o (PARI) for(n=1,10, print1(sum(k=1,n, (k^2)^((n-k+1)^2) ), ", ")) \\ _G. C. Greubel_, May 18 2017
%Y Cf. A000290, A005408, A113122, A113153, A113154.
%K easy,nonn
%O 1,2
%A _Jonathan Vos Post_, Jan 07 2006
%E a(4) and a(5) corrected by _Giovanni Resta_, Jun 13 2016