Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Aug 18 2023 23:51:23
%S -1,4,11,1,59,484,-1009,6241,-2761,13924,87251,57121,49139,4072324,
%T -7165609,35058241,10350959,30492484,559712411,973502401,-1957852501,
%U 30450948004,-41421000289,174055005601,241428053159,9658565284,2872244917091,11300885699041,-25300162140061
%N Corresponds to m = 3 in a family of 4th-order linear recurrence sequences given by a(m,n) = m^4*a(n-4) + (2*m)^2*a(n-3) - 4*a(n-1), a(m,0) = -1, a(m,1) = 4, a(m,2) = -13 + 6*(m-1) + 3*(m-1)^2, a(m,3) = (-8+m^2)^2.
%C Conjecture: a(m, 2*n+1) is a perfect square for all m, n. Disregarding signs and/or initial term, we have: m = 0 (A000302), m = 1 (A097948), m = 2 (A056450), m = 3 (a(n)), m = 4 (A113250), m = 5 (A113251), m = 6 (A113252), m = 7 (A113253), m = 8 (A113254), m = 9 (A113255), m = 10 (A113256).
%C In this case, a(2n+1) = b(n)^2 where b(n) = Re((2+sqrt(-5))^(n+1)) satisfies the recurrence b(n) = 4*b(n-1) - 9*b(n-2) with b(0)=2, b(1)=-1. - _Robert Israel_, Oct 23 2017
%H Colin Barker, <a href="/A113249/b113249.txt">Table of n, a(n) for n = 0..1000</a>
%H Robert Munafo, <a href="http://www.mrob.com/pub/math/seq-floretion.html">Sequences Related to Floretions</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-4,0,36,81).
%F G.f.: (-1+27*x^2+81*x^3)/((-3*x+1)*(3*x+1)*(9*x^2+4*x+1)).
%F a(2k+1) = (2*A176333(k)-3*A190967(k))^2. - _Robert Israel_, Oct 23 2017
%F a(n) = -4*a(n-1) + 36*a(n-3) + 81*a(n-4) for n>3. - _Colin Barker_, May 19 2019
%F a(n) = 3^(n+1)*(1 - (-1)^n + 2*cos(arccos(-2/3)*(n+1)))/4. - _Eric Simon Jacob_, Aug 06 2023
%e a(3, 13) = 93161710957356599364/((-2+i*sqrt(5))^14*(2+i*sqrt(5))^14) = 4072324 = 2^2*1009^2.
%p f:= gfun:-rectoproc({a(n) = 81*a(n-4)+36*a(n-3)-4*a(n-1),a(0) = -1, a(1) = 4, a(2) = 11, a(3) = 1},a(n),remember):
%p map(f, [$0..30]); # _Robert Israel_, Oct 23 2017
%t LinearRecurrence[{-4, 0, 36, 81}, {-1, 4, 11, 1}, 29] (* _Jean-François Alcover_, Sep 25 2017 *)
%o (PARI) Vec(-(1 - 27*x^2 - 81*x^3) / ((1 - 3*x)*(1 + 3*x)*(1 + 4*x + 9*x^2)) + O(x^30)) \\ _Colin Barker_, May 19 2019
%Y Cf. A000302, A097948, A056450, A113250, A113251, A113252, A113253, A113254, A113255, A113256.
%Y Cf. A176333, A190967.
%K easy,sign
%O 0,2
%A _Creighton Dement_, Oct 20 2005