login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: exp(x*(1 - x^3 + x^4)/(1-x)).
2

%I #13 May 10 2016 17:38:37

%S 1,1,3,13,49,381,2971,26713,291873,3262969,41245651,569262981,

%T 8433896593,136060620853,2342471665899,42987065380561,838321137046081,

%U 17272648375895793,375413770580941603,8579701021461918589,205637099039964274161,5158188565847339152621

%N E.g.f.: exp(x*(1 - x^3 + x^4)/(1-x)).

%C Number of partitions of {1,..,n} into any number of lists of size not equal to 4, where a list means an ordered subset, cf. A000262.

%H Alois P. Heinz, <a href="/A113237/b113237.txt">Table of n, a(n) for n = 0..444</a>

%F Expression as a sum involving generalized Laguerre polynomials, in Mathematica notation: a(n)=n!*Sum[(-1)^k*LaguerreL[n - 4*k, -1, -1]/k!, {k, 0, Floor[n/4]}], n=0, 1....

%F Recurrence: a(n) = (2*n-1)*a(n-1) - (n-2)*(n-1)*a(n-2) - 4*(n-3)*(n-2)*(n-1)*a(n-4) + 8*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5) - 4*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6). - _Vaclav Kotesovec_, Jun 24 2013

%F a(n) ~ n^(n-1/4)*exp(-3/2+2*sqrt(n)-n)/sqrt(2) * (1 + 187/(48*sqrt(n))). - _Vaclav Kotesovec_, Jun 24 2013

%p a:= proc(n) option remember; `if`(n=0, 1, add(

%p `if`(j=4, 0, a(n-j)*binomial(n-1, j-1)*j!), j=1..n))

%p end:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, May 10 2016

%t f[n_] := n!*Sum[(-1)^k*LaguerreL[n - 4*k, -1, -1]/k!, {k, 0, Floor[n/4]}]; Table[ f[n], {n, 0, 19}]

%t Range[0, 19]!* CoefficientList[ Series[ Exp[x*(1 - x^3 + x^4)/(1 - x)], {x, 0, 19}], x] (* _Robert G. Wilson v_, Oct 21 2005 *)

%Y Cf. A000262, A052845, A097514, A113235, A113236.

%K nonn

%O 0,3

%A _Karol A. Penson_, Oct 19 2005