login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive integers sorted by rote weight, rote quench and rote height.
1

%I #9 Mar 14 2015 00:25:47

%S 1,2,3,4,6,9,5,7,8,16,12,18,10,14,13,23,25,27,49,64,81,512,11,17,19,

%T 32,53,128,256,65536,36,26,46,50,54,98,125,162,2401,22,34,38,106,15,

%U 21,37,61,169,343,529,625,729,4096,19683,262144,29,41,43,83,97,103,121,227

%N Positive integers sorted by rote weight, rote quench and rote height.

%C For positive integer m, the rote weight in gammas is g(m) = A062537(m), the rote quench or primal code characteristic is q(m) = A108352(m) and the rote height in gammas is h(m) = A109301(m).

%C This sequence begins to differ from A113197 at the 40th term, a(40) = 22.

%H J. Awbrey, <a href="http://stderr.org/pipermail/inquiry/2005-October/003127.html">Table for Rote Weights 0 to 5</a>

%H J. Awbrey, <a href="https://oeis.org/wiki/Riffs_and_Rotes">Riffs and Rotes</a>

%e Primal Functions, Primal Codes, Sort Parameters and Subtotals

%e ================================================================

%e Primal Function | ` ` ` Primal Code ` = ` a | g q h | r | s | t

%e ================================================================

%e { } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 1 0 | 1 | 1 | 1

%e ================================================================

%e 1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 0 1 | 1 | 1 | 1

%e ================================================================

%e 2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 2 2 | ` | ` |

%e 1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 2 2 | 2 | 2 | 2

%e ================================================================

%e 1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 6 | 3 0 2 | ` | ` |

%e 2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 9 | 3 0 2 | 2 | 2 |

%e ----------------+---------------------------+-------+---+---+---

%e 3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 2 3 | ` | ` |

%e 4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 2 3 | ` | ` |

%e 1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 2 3 | ` | ` |

%e 1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `16 | 3 2 3 | 4 | 4 | 6

%e ================================================================

%e 1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `12 | 4 0 2 | ` | ` |

%e 1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `18 | 4 0 2 | 2 | ` |

%e ----------------+---------------------------+-------+---+---+---

%e 1:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `10 | 4 0 3 | ` | ` |

%e 1:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `14 | 4 0 3 | 2 | 4 |

%e ----------------+---------------------------+-------+---+---+---

%e 6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `13 | 4 2 3 | ` | ` |

%e 9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `23 | 4 2 3 | ` | ` |

%e 3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `25 | 4 2 3 | ` | ` |

%e 2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `27 | 4 2 3 | ` | ` |

%e 4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `49 | 4 2 3 | ` | ` |

%e 1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `64 | 4 2 3 | ` | ` |

%e 2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `81 | 4 2 3 | ` | ` |

%e 1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 512 | 4 2 3 | 8 | ` |

%e ----------------+---------------------------+-------+---+---+---

%e 5:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `11 | 4 2 4 | ` | ` |

%e 7:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `17 | 4 2 4 | ` | ` |

%e 8:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `19 | 4 2 4 | ` | ` |

%e 1:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `32 | 4 2 4 | ` | ` |

%e 16:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `53 | 4 2 4 | ` | ` |

%e 1:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 128 | 4 2 4 | ` | ` |

%e 1:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 256 | 4 2 4 | ` | ` |

%e 1:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 65536 | 4 2 4 | 8 |16 |20

%e ================================================================

%e a = this sequence

%e g = rote weight in gammas = A062537

%e q = primal code character = A108352

%e h = rote height in gammas = A109301

%e r = number in (g,q,h) set = A113200

%e s = count in (g, q) class = A112869

%e t = count in weight class = A061396

%Y Cf. A061396, A062504, A062537, A062860, A106177, A106178.

%Y Cf. A108352, A108353, A108370 to A108374, A109300, A109301.

%Y Cf. A111791 to A111801, A112868, A112869, A112870, A112871.

%Y Cf. A113197, A113198, A113200.

%K nonn,tabf

%O 1,2

%A _Jon Awbrey_, Oct 18 2005