login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1; for n > 1, a(n) = largest prime <= a(n-1) + n - 1.
2

%I #22 Dec 15 2024 13:06:06

%S 1,2,3,5,7,11,17,23,31,37,47,53,61,73,83,97,113,127,139,157,173,193,

%T 211,233,257,281,307,331,359,383,409,439,467,499,523,557,593,619,653,

%U 691,727,761,797,839,883,919,953,997,1039,1087,1129,1171,1223,1259,1307

%N a(1) = 1; for n > 1, a(n) = largest prime <= a(n-1) + n - 1.

%H Harvey P. Dale, <a href="/A113161/b113161.txt">Table of n, a(n) for n = 1..1000</a>

%e a(7) = 17. So a(8) = the largest prime <= 17 + 7 = 24, which is 23.

%t PrevPrim[n_] := Block[{k = n - 1}, While[ !PrimeQ[k], k-- ]; k]; a[1] = 1; a[n_] := a[n] = PrevPrim[a[n - 1] + n]; Array[a, 55] (* _Robert G. Wilson v_ *)

%t a[1]=1;a[n_]:=NextPrime[a[n-1]+n,-1];Table[a[n],{n,55}] (* _James C. McMahon_, Jun 16 2024 *)

%t nxt[{n_,a_}]:={n+1,If[PrimeQ[a+n],a+n,NextPrime[a+n,-1]]}; NestList[nxt,{1,1},60][[;;,2]] (* _Harvey P. Dale_, Dec 15 2024 *)

%o (PARI) {print1(a=1,",");for(n=2,55,print1(a=precprime(a+n-1),","))} \\ _Klaus Brockhaus_, Jan 06 2006

%Y Cf. A093503.

%K nonn,changed

%O 1,2

%A _Leroy Quet_, Jan 05 2006

%E More terms from _Klaus Brockhaus_ and _Robert G. Wilson v_, Jan 06 2006