Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Feb 19 2020 00:57:43
%S 1,3,1,13,5,1,63,25,7,1,321,129,41,9,1,1683,681,231,61,11,1,8989,3653,
%T 1289,377,85,13,1,48639,19825,7183,2241,575,113,15,1,265729,108545,
%U 40081,13073,3649,833,145,17,1,1462563,598417,224143,75517,22363,5641
%N Number triangle, equal to half of Delannoy square array A008288.
%C Row sums are A047781(n+1). Diagonal sums are A113140. Inverse is A113141.
%H Peter Bala, <a href="/A260492/a260492.pdf">Notes on generalized Riordan arrays</a>
%H Peter Bala, <a href="/A264772/a264772_1.pdf">A 4-parameter family of embedded Riordan arrays</a>
%F T(n, k) = Sum_{j=0..n} C(n-k, j)*C(n+j, k+j).
%F T(n, k) = Sum_{j=0..n} C(n, j)*C(n-k, j-k)*2^(n-j).
%F From _Peter Bala_, Dec 09 2015: (Start)
%F T(n,k) = A008288(n - k, n).
%F O.g.f.: 2/( sqrt(x^2 - 6*x + 1)*(t*sqrt(x^2 - 6*x + 1) + t*x - t + 2) ) = 1 + (3 + t)*x + (13 + 5*t + t^2)*x^2 + ....
%F Riordan array (f(x), x*g(x)), where f(x) = 1/sqrt(1 - 6*x + x^2) is the o.g.f. for the central Delannoy numbers, A001850, and g(x) = 1/x* revert( x*(1 - x)/(1 + x) ) = 1 + 2*x + 6*x^2 + 22*x^3 + 90*x^4 + 394*x^5 + ... is the o.g.f. for the large Schroder numbers, A006318.
%F Read as a square array, this is the generalized Riordan array (f(x), g(x)) in the sense of the Bala link, which factorizes as (1 + x*g'(x)/g(x), x*g(x)) * (1/(1 - x), (1 + x)/(1 - x)) = A110171 * A008288. See the example below. (End)
%F T(n,k) = (-1)^(n-k)*hypergeom([n+1, -n+k], [1], 2). - _Peter Luschny_, Mar 02 2017
%F From _Peter Bala_, Feb 16 2020: (Start)
%F T(n,k) = P(n-k, k, 0, 3), where P(n, alpha, beta, x) is the n-th Jacobi polynomial with parameters alpha and beta.
%F T(n,k) = binomial(n,k) * hypergeom( [n + 1, k - n], [k + 1], -1 ).
%F The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 + x)^n/(1 - x)^(n+1) about 0. For example, for n = 4, (1 + x)^4/(1 - x)^5 = 1 + 9*x + 41*x^2 + 129*x^3 + 321*x^4 + O(x^5). Cf. A110171. (End)
%e Triangle begins
%e 1;
%e 3, 1;
%e 13, 5, 1;
%e 63, 25, 7, 1;
%e 321, 129, 41, 9, 1;
%e 1683, 681, 231, 61, 11, 1;
%e 8989, 3653, 1289, 377, 85, 13, 1;
%e ...
%e A113139 as a square array = A110171 * A008288:
%e / 1 1 1 1 ... \ / 1 \ / 1 1 1 1 ...\
%e | 3 5 7 9 ... | | 2 1 || 1 3 5 7 ...|
%e |13 25 41 61 ... | = | 8 4 1 || 1 5 13 25 ...|
%e |63 129 231 377 ... | |38 18 6 1 || 1 7 25 63 .. |
%e |... | |... || 1... |
%e - _Peter Bala_, Dec 09 2015
%p T := (n,k) -> (-1)^(n-k)*hypergeom([n+1, -n+k], [1], 2):
%p seq(seq(simplify(T(n,k)),k=0..n),n=0..8); # _Peter Luschny_, Mar 02 2017
%t Table[Sum[Binomial[n - k, j] Binomial[n + j, k + j], {j, 0, n}], {n, 0, 9}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Dec 09 2015 *)
%Y A001850 (column 0), A002002 (column 1), A026002 (column 2), A190666 (column 3), A047781 (row sums), A113140 (diagonal sums), A113141 (matrix inverse). Cf. A006318, A008288, A110171.
%K easy,nonn,tabl
%O 0,2
%A _Paul Barry_, Oct 15 2005