%I
%S 1,0,1,2,1,1,2,3,3,2,1,1,2,3,3,4,4,3,1,1,3,4,4,5,5,5,5,
%T 4,3,2,1,1,2,3,4,5,5,5,5,6,6,5,1,1,5,6,6,7,7,7,7,7,7,6,
%U 5,4,3,2,1,1,2,3,4,5,6,7,7,7,7,7,7,8,8,8,8,7,5,3,1,1,3,5,7
%N The rational numbers can be ordered by height and then by magnitude (see A002246, A097080); sequence gives numerators.
%D M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford, 1996; p. 7.
%H <a href="/index/Ra#rational">Index entries for sequences related to enumerating the rationals</a>
%e The rationals with this ordering, with those of height k in row k (there are three of height 1, and 4*A000010(k) rationals of height k, for k>1):
%e 1 0 1
%e 2 1/2 1/2 2
%e 3 3/2 2/3 1/3 1/3 2/3 3/2 3
%e 4 4/3 3/4 1/4 1/4 3/4 4/3 4
%e ...
%Y Cf. A113137, A002246, A097080.
%K sign,easy,tabf
%O 1,4
%A _N. J. A. Sloane_, Nov 02 2008
%E More terms from _John W. Layman_, Nov 06 2008
