%I #15 Mar 21 2020 04:06:26
%S -1,0,1,-2,-1,1,2,-3,-3,-2,-1,1,2,3,3,-4,-4,-3,-1,1,3,4,4,-5,-5,-5,-5,
%T -4,-3,-2,-1,1,2,3,4,5,5,5,5,-6,-6,-5,-1,1,5,6,6,-7,-7,-7,-7,-7,-7,-6,
%U -5,-4,-3,-2,-1,1,2,3,4,5,6,7,7,7,7,7,7,-8,-8,-8,-8,-7,-5,-3,-1,1,3,5,7
%N The rational numbers can be ordered by height and then by magnitude (see A002246, A097080); sequence gives numerators.
%D M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford, 1996; p. 7.
%H <a href="/index/Ra#rational">Index entries for sequences related to enumerating the rationals</a>
%e The rationals with this ordering, with those of height k in row k (there are three of height 1, and 4*A000010(k) rationals of height k, for k>1):
%e -1 0 1
%e -2 -1/2 1/2 2
%e -3 -3/2 -2/3 -1/3 1/3 2/3 3/2 3
%e -4 -4/3 -3/4 -1/4 1/4 3/4 4/3 4
%e ...
%Y Cf. A113137, A002246, A097080.
%K sign,easy,tabf
%O 1,4
%A _N. J. A. Sloane_, Nov 02 2008
%E More terms from _John W. Layman_, Nov 06 2008