login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Associated with theta series of hexagonal net with respect to a node.
3

%I #31 Dec 28 2023 01:51:26

%S 1,0,2,1,0,0,2,0,2,0,0,2,2,0,0,1,0,0,2,0,4,0,0,0,1,0,2,2,0,0,2,0,0,0,

%T 0,2,2,0,4,0,0,0,2,0,0,0,0,2,3,0,0,2,0,0,0,0,4,0,0,0,2,0,4,1,0,0,2,0,

%U 0,0,0,0,2,0,2,2,0,0,2,0,2,0,0,4,0,0,0,0,0,0,4,0,4,0,0,0,2,0,0,1,0,0,2,0,0

%N Associated with theta series of hexagonal net with respect to a node.

%C Denoted by |lambda(n)| on page 4 (1.7) in Kassel and Reutenauer arXiv:1610.07793. - _Michael Somos_, Jun 04 2015

%H Antti Karttunen, <a href="/A113063/b113063.txt">Table of n, a(n) for n = 1..16384</a>

%H Christian Kassel and Christophe Reutenauer, <a href="https://arxiv.org/abs/1505.07229v3">The zeta function of the Hilbert scheme of n points on a two-dimensional torus</a>, arXiv:1505.07229v3 [math.AG], 2015. [Note that a later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication which is next in this list.]

%H Christian Kassel and Christophe Reutenauer, <a href="https://arxiv.org/abs/1610.07793">Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus</a>, arXiv:1610.07793 [math.NT], 2016.

%F Moebius transform is period 9 sequence [ 1, -1, 1, 1, -1, -1, 1, -1, 0, ...].

%F a(n) is multiplicative with a(p^e) = 2 if p = 3 and e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 2, 5 (mod 6).

%F a(3*n + 2) = 0. a(3*n + 1) = A033687(n), a(3*n) = 2 * A002324(n).

%F 3 * a(n) = A113062(n) unless n=0.

%F G.f.: Sum_{k>0} f(x^k) + f(x^(3*k)) where f(x) := x / (1 + x + x^2). - _Michael Somos_, Jun 04 2015

%F a(n) = |A123477(n)|. - _Michael Somos_, Dec 10 2017

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/(9*sqrt(3)) = 0.806133... (A121839 - 1). - _Amiram Eldar_, Dec 28 2023

%e G.f. = x + 2*x^3 + x^4 + 2*x^7 + 2*x^9 + 2*x^12 + 2*x^13 + x^16 + 2*x^19 + ...

%t a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, -1, 1, 1, -1, -1, 1, -1, 0} [[Mod[#, 9, 1]]] &]]; (* _Michael Somos_, Jun 04 2015 *)

%t f[p_, e_] := If[Mod[p, 6] == 1, e+1, (1+(-1)^e)/2]; f[3, e_] := 2; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* _Amiram Eldar_, Sep 05 2023 *)

%o (PARI) {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -1, 1, 1, -1, -1, 1, -1][d%9 + 1]))};

%o (PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 2, p%6==1, e+1, !(e%2))))};

%Y Cf. A002324, A033687, A113062, A121839, A123477.

%K nonn,easy,mult

%O 1,3

%A _Michael Somos_, Oct 13 2005