Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Aug 22 2023 20:42:56
%S 3,7,9,7,3,1,9,5,4,7,4,0,9,9,5,6,3,2,8,0,2,1,0,6,2,5,3,6,3,4,7,5,5,3,
%T 8,1,6,1,2,5,9,4,1,6,0,3,5,9,0,8,1,2,5,3,1,5,2,6,4,3,3,4,4,9,4,4,8,8,
%U 0,5,2,5,3,7,3,6,3,5,6,7,3,8,3,1,7,4,4,4,8,3,2,3,0,7,1,5,4,8,1,7,4,8,3,4,0
%N Decimal expansion of value of the continued fraction 1/(2+3/(4+5/(6+7/....
%C This fraction equals sqrt(2e/Pi)/erfi(1/sqrt(2)) - 1. - _Robert Israel_, Aug 29 2007
%H G. C. Greubel, <a href="/A113014/b113014.txt">Table of n, a(n) for n = 0..10000</a>
%H Sci.math, <a href="http://groups.google.com/group/sci.math/browse_thread/thread/9a56745424d4262f/6ea7ddfb3f7e1d8c?lnk=gst&q=bhushit#6ea7ddfb3f7e1d8c">Continued Fractions</a>.
%e 0.3797319547409956328...
%t n=150; s=n; While[n-2>=0, s=n-2 + (n-1)/s; n=n-2]; RealDigits[N[s, 120]][[1]]
%t RealDigits[N[Sqrt[2E/Pi]/Erfi[1/Sqrt[2]]-1,120]][[1]] (* _T. D. Noe_, Oct 06 2008 *)
%o (PARI) {Erfi(z) = -I*(1.0-erfc(I*z))};
%o real(sqrt(2*exp(1)/Pi)/Erfi(1/sqrt(2)) - 1) \\ _G. C. Greubel_, Apr 09 2018
%Y Cf. A365105, A365116.
%K cons,nonn
%O 0,1
%A _T. D. Noe_, Oct 10 2005
%E Sci.math link from Bhushit Joshipura (joshipura(AT)gmail.com), Jul 15 2008