Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 06 2021 19:00:37
%S 2,3,7,8,27,43,47,48,52,53,63,68,92,157,172,187,192,263,378,408,423,
%T 458,468,478,487,527,587,608,648,692,823,843,918,1457,1587,1592,4657,
%U 4732,5692,6058,6378,7658
%N Numbers whose cubes are exclusionary: numbers k such that k has no repeated digits and k and k^3 have no digits in common.
%C A number k with no repeated digits has an exclusionary cube k^3 if the latter is made up of digits not appearing in k. (This is a subsequence of A029785.) For the corresponding exclusionary cubes see A112993. Conjectured to be complete.
%C Data are complete: there are 42 terms. - _Michael S. Branicky_, Aug 27 2021
%D H. Ibstedt, Solution to Problem 2623, "Exclusionary Powers", pp. 346-9, Journal of Recreational Mathematics, vol. 32 No.4 2003-4, Baywood NY.
%D Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
%H Clifford A. Pickover, <a href="http://sprott.physics.wisc.edu/Pickover/extremec.html">Extreme Challenges in Mathematics and Morals</a>
%t Select[Range[8000],Max[DigitCount[#]]==1&&Intersection[IntegerDigits[ #],IntegerDigits[#^3]]=={}&] (* _Harvey P. Dale_, Sep 06 2021 *)
%o (PARI) isok(n) = my(digs = digits(n)); (#digs == #Set(digs)) && (#setintersect(Set(digs), Set(digits(n^3))) == 0); \\ _Michel Marcus_, Oct 26 2013
%o (Python)
%o def ok(n):
%o s = str(n)
%o return len(s) == len(set(s)) and set(s) & set(str(n**3)) == set()
%o print([k for k in range(7659) if ok(k)]) # _Michael S. Branicky_, Aug 27 2021
%o (Python) # version for verifying full sequence
%o from itertools import permutations
%o def no_repeated_digits():
%o for d in range(1, 11):
%o for p in permutations("0123456789", d):
%o if p[0] == '0': continue
%o yield int("".join(p))
%o def afull():
%o alst = []
%o for k in no_repeated_digits():
%o if set(str(k)) & set(str(k**3)) == set():
%o alst.append(k)
%o return alst
%o print(afull()) # _Michael S. Branicky_, Aug 27 2021
%Y Subsequence of A029785.
%Y The corresponding cubes are in A112993.
%K nonn,base,fini,full
%O 1,1
%A _Lekraj Beedassy_, Oct 13 2005
%E Missing term 468 added by _N. J. A. Sloane_, May 22 2008
%E Definition clarified by _Harvey P. Dale_, Sep 06 2021