login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112986
Crossing number of K_{4,n} on the real projective plane.
0
0, 0, 0, 3, 5, 7, 18, 22, 26, 45, 51, 57, 84, 92, 100, 135, 145, 155, 198, 210, 222, 273, 287, 301, 360, 376, 392, 459, 477, 495, 570, 590, 610, 693, 715, 737, 828, 852, 876, 975, 1001, 1027, 1134, 1162, 1190, 1305, 1335, 1365, 1488, 1520, 1552, 1683, 1717, 1751, 1890
OFFSET
0,4
FORMULA
a(n) = floor(n/3)*(2*n-3). [Corrected by Amiram Eldar, May 15 2024]
G.f.: -x^3*(5*x^3+2*x^2+2*x+3) / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Mar 06 2014
Sum_{n>=3} 1/a(n) = 2*log(2)/3 + 6 - sqrt(3)*Pi. - Amiram Eldar, May 15 2024
MATHEMATICA
a[n_] := Floor[n/3]*(2*n - 3); Array[a, 100, 0] (* Amiram Eldar, May 15 2024 *)
CROSSREFS
Cf. A008724.
Sequence in context: A247164 A064080 A184875 * A052333 A074106 A002261
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 24 2005
STATUS
approved