login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Logarithmic derivative of A112942 such that a(n)=(1/6)*A112942(n+1) for n>0, where A112942 equals the INVERT transform (with offset) of sextuple factorials A008543.
9

%I #3 Mar 30 2012 18:36:51

%S 1,11,181,4031,114001,3917771,158531941,7380184511,388385146081,

%T 22791211333451,1475182111403221,104384110708795391,

%U 8015356365346614961,663741406196190241931,58957686544170035607301

%N Logarithmic derivative of A112942 such that a(n)=(1/6)*A112942(n+1) for n>0, where A112942 equals the INVERT transform (with offset) of sextuple factorials A008543.

%F G.f.: log(1+x + 6*x*[Sum_{n>=1} a(n)]) = Sum_{n>=1} a(n)/n*x^n.

%e log(1+x + 6*x*[x + 11*x^2 + 181*x^3 + 4031*x^4 + 114001*x^5 +...])

%e = x + 11/2*x^2 + 181/3*x^3 + 4031/4*x^4 + 114001/5*x^5 + ...

%o (PARI) {a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+6*x^2*deriv(F)/F); return(n*polcoeff(log(F),n,x))}

%Y Cf. A008543, A112942; A112934, A112935, A112936, A112937, A112938, A112939, A112940, A112941.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Oct 09 2005