Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 May 22 2024 15:13:13
%S 1,1,4,6,7,13,19,31,24,76,41,77,116,116,87,226,115,307,276,308,201,
%T 671,317,523,478,786,403,1495
%N Number of nonisomorphic H-graphs H(n:i,j;k,m) on 6n vertices (or nodes) for 1<=i,j,k,m<n/2.
%C An H-graph H(n:i,j;k,m) has 6n vertices arranged in six segments of n vertices. Let the vertices be v_{x,y} for x=0,1,2,3,4,5 and y in the integers modulo n. The edges are v_{0,y}v_{1,y}, v_{0,y}v_{2,y}, v_{0,y}v_{3,y}, v_{1,y}v_{4,y}, v_{1,y}v_{5,y} (inner edges) and v_{2,y}v_{2,y+i}, v_{3,y}v_{3,y+j}, v_{4,y}v_{3,y+k}, v_{5,y}v_{5,y+m} (outer edges) where y=0,1,...,n-1 and subscript addition is performed modulo n.
%D I. Z. Bouwer, W. W. Chernoff, B. Monson, and Z. Starr (Editors), "Foster's Census", Charles Babbage Research Centre, Winnipeg, 1988.
%H J. D. Horton and I. Z. Bouwer, <a href="https://doi.org/10.1016/0095-8956(91)90057-Q">Symmetric Y-graphs and H-graphs</a>, J. Comb. Theory B 53 (1991) 114-129.
%e The only connected symmetric H-graphs are H(17:1,4;2,8) and H(34:1,13;9,15) which are also listed in Foster's Census.
%Y Cf. A112918, A112919, A112920, A112921, A107452.
%K nonn,more
%O 3,3
%A Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), _Tomaz Pisanski_ and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), Oct 06 2005