OFFSET
0,4
COMMENTS
Matrix inverse square satisfies: [T^-2](3*n+2,n) = 0 for n>=0.
EXAMPLE
Triangle T begins:
1;
1,1;
3,2,1;
14,8,3,1;
85,44,15,4,1;
621,298,96,24,5,1;
5236,2358,729,176,35,6,1;
49680,21154,6327,1492,290,48,7,1; ...
Matrix inverse T^-1 begins:
1;
-1,1;
-1,-2*1,1;
-3,-2*1,-3*1,1;
-14,-2*3,-3*1,-4*1,1;
-85,-2*14,-3*3,-4*1,-5*1,1;
-621,-2*85,-3*14,-4*3,-5*1,-6*1,1; ...
where [T^-1](n,k) = -(k+1)*T(n-1,0) for n>k>=0.
PROG
(PARI) {T(n, k)=local(A=Mat(1), B); for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=-j*(A^-1)[i-j, 1] ); )); A=B); return((A^-1)[n+1, k+1])}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 06 2005
STATUS
approved