login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle built from partial sums of Catalan numbers A000108 multiplied by powers.
12

%I #18 Aug 29 2022 10:31:31

%S 1,1,1,1,2,1,1,4,3,1,1,9,11,4,1,1,23,51,22,5,1,1,65,275,157,37,6,1,1,

%T 197,1619,1291,357,56,7,1,1,626,10067,11497,3941,681,79,8,1,1,2056,

%U 64979,107725,46949,9431,1159,106,9,1,1,6918,431059,1045948,587621,140681,19303,1821,137,10,1

%N Triangle built from partial sums of Catalan numbers A000108 multiplied by powers.

%C The column sequences (without leading zeros) begin with A000012 (powers of 1), A112705 (partial sums Catalan), A112696-A112704, for m=0..10.

%H Wolfdieter Lang, <a href="/A112705/a112705.txt">First 10 rows.</a>

%F a(n, m) = sum(C(k)*m^k, k=0..n-m), n>m>0, with C(n):=A000108(n); a(n, n)=1; a(n, 0)=1; a(n, m)=0 if n<m.

%F G.f. for column m>=0 (without leading zeros): c(m*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.

%e Triangle starts:

%e 1;

%e 1, 1;

%e 1, 2, 1;

%e 1, 4, 3, 1;

%e 1, 9, 11, 4, 1;

%e 1, 23, 51, 22, 5, 1;

%e 1, 65, 275, 157, 37, 6, 1;

%e ...

%t col[m_] := col[m] = CatalanNumber[#]*m^#& /@ Range[0, 20] // Accumulate;

%t T[n_, m_] := If[m == 0, 1, col[m][[n - m + 1]]];

%t Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* _Jean-François Alcover_, Aug 29 2022 *)

%o (PARI) t(n, m) = if (m==0, 1, if (n==m, 1, sum(kk=0, n-m, m^kk*binomial(2*kk, kk)/(kk+1))));

%o tabl(nn) = {for (n=0, nn, for (m=0, n, print1(t(n, m), ", ");); print(););} \\ _Michel Marcus_, Nov 25 2015

%Y Row sums give A112706.

%K nonn,easy,tabl

%O 0,5

%A _Wolfdieter Lang_, Oct 31 2005