login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (4+49*x+108*x^2-432*x^3+54675*x^5)/((1-27*x^2)*(1-6*x+27*x^2)*(1+6*x+27*x^2)).
1

%I #19 Oct 04 2024 15:37:53

%S 4,49,144,9,324,42849,46656,1347921,3175524,1896129,23619600,

%T 532917225,359254116,30866624721,59997563136,185622243921,

%U 917583904836,4659420127761,750046066704,604376350260489,964709560931076

%N Expansion of (4+49*x+108*x^2-432*x^3+54675*x^5)/((1-27*x^2)*(1-6*x+27*x^2)*(1+6*x+27*x^2)).

%C A floretion-generated sequence of squares.

%H Colin Barker, <a href="/A112533/b112533.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,9,0,-243,0,19683).

%F a(n) = 9*a(n-2) - 243*a(n-4) + 19683*a(n-6) for n>5. - _Colin Barker_, May 06 2019

%F a(n) = (p^n/12)*( 9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*ChebyshevU(n, 3/p) - (1/p)*(153 - 261*(-1)^n)*ChebyshevU(n-1, 3/p) ), where p = sqrt(27). - _G. C. Greubel_, Jan 12 2022

%t a[n_]:= With[{p=Sqrt[27]}, Simplify[(p^n/12)*(9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*ChebyshevU[n, 3/p] -(153-261*(-1)^n)/p*ChebyshevU[n-1, 3/p] )]];

%t Table[a[n], {n, 0, 30}] (* _G. C. Greubel_, Jan 12 2022 *)

%o (PARI) Vec((4 + 49*x + 108*x^2 - 432*x^3 + 54675*x^5) / ((1 - 6*x + 27*x^2)*(1 - 27*x^2)*(1 + 6*x + 27*x^2)) + O(x^20)) \\ _Colin Barker_, May 06 2019

%o (Magma) I:=[4,49,144,9,324,42849]; [n le 6 select I[n] else 9*(Self(n-2) - 27*Self(n-4) +2187*Self(n-6)): n in [1..31]]; // _G. C. Greubel_, Jan 12 2022

%o (Sage)

%o U=chebyshev_U

%o p=sqrt(27)

%o def A112533(n): return (p^n/12)*( 9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*U(n, 3/p) - (1/p)*(153 - 261*(-1)^n)*U(n-1, 3/p) )

%o [A112533(n) for n in (0..30)] # _G. C. Greubel_, Jan 12 2022

%Y Cf. A112534, A112535, A112536, A112537, A112538.

%K nonn,easy

%O 0,1

%A _Creighton Dement_, Sep 11 2005