|
|
A112423
|
|
Number of 6-element subsets of {1,2,3,...,n} which have a sum-set with 14 elements.
|
|
1
|
|
|
6, 24, 42, 60, 78, 96, 114, 138, 162, 198, 234, 270, 306, 342, 384, 426, 468, 522, 576, 630, 684, 744, 804, 864, 924, 996, 1068, 1140, 1218, 1296, 1374, 1452, 1530, 1620, 1710, 1806, 1902, 1998, 2094, 2190, 2286, 2394
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
8,1
|
|
LINKS
|
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,0,-1,0,0,0,0,0,-1,1).
|
|
FORMULA
|
G.f.: 6*x^8/((1-x)^2*(1-x^7))+12*x^9/((1-x)^2*(1-x^8)).
|
|
MATHEMATICA
|
DeleteCases[#, 0] &@ CoefficientList[Series[6 x^8/((1 - x)^2 (1 - x^7)) + 12 x^9/((1 - x)^2 (1 - x^8)), {x, 0, 49}], x] (* Michael De Vlieger, Jan 10 2017 *)
|
|
PROG
|
(PARI) Vec(6*x^8*(1 +3*x +3*x^2 +3*x^3 +3*x^4 +3*x^5 +3*x^6 +3*x^7) / ((1 -x)^3*(1 +x)*(1 +x^2)*(1 +x^4)*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6)) + O(x^60)) \\ Colin Barker, Jan 10 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|