Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Nov 23 2018 04:00:50
%S 3,35,75361,105640931881921,368107372881122974005026861194791580321,
%T 1068920105772796102633531337368359482127315843763564268088796774223747755119986736765386063992951681
%N a(n) = (Product_{e_i=0..1} (Product_{i=1..n} p_i^e_i + Product_{i=1..n} p_i^(1-e_i)))^(1/2) where p_i is the i-th prime.
%C This is a "Proof of existence of infinitely many primes" sequence. Proof. Let N = (Product_{e_i=0..1} (Product_{i=1..n} p_i^e_i + Product_{i=1..n} p_i^(1-e_i)))^(1/2). Suppose there are only a finite number of primes p_i, 1 <= i <= n. If N is prime, then for all i, N != p_i because, for all i, p_i < N. If N is composite, then it must have a prime divisor p which is different from primes p_i because, for all i, N !== 0 (mod p_i).
%C The numbers of decimal digits of a(n) are 1, 2, 5, 15, 39, 100, 246, 590, 1387, 3215, 7321, 16507, 36823, 81305, 178212, 388495, 842638, 1816984, ..., . - _Robert G. Wilson v_
%C The numbers of prime factors of a(n) are 1, 2, 4, 8, 16, 33, 69, 136, 280, 566, 1107, ..., . - _Robert G. Wilson v_
%e a(3) = ((1 + p_1*p_2*p_3)*(p_3 + p_1*p_2)*(p_2 + p_1*p_3)*(p_2*p_3 + p_1)*(p_1 + p_2*p_3)*(p_1*p_3 + p_2)*(p_1*p_2 + p_3)*(p_1*p_2*p_3 + 1))^(1/2)
%e = (1 + p_1*p_2*p_3)*(p_3 + p_1*p_2)*(p_2 + p_1*p_3)*(p_2*p_3 + p_1) = 31*11*13*17.
%t f[n_] := Block[{a = 1, p = Prime@Range@n, k = 0, lmt = 2^(n - 1)}, While[k < lmt, e = IntegerDigits[k, 2, n]; a = a*(Times @@ (p^e) + Times @@ (p^(1 - e))); k++ ]; a]; Array[f, 7] (* _Robert G. Wilson v_ *)
%Y Cf. A111392.
%K nonn
%O 1,1
%A _Yasutoshi Kohmoto_
%E Edited by _Robert G. Wilson v_, Dec 10 2005