login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 30f for the Monster group.
1

%I #15 Jul 03 2018 03:57:57

%S 1,1,1,0,-2,2,0,1,0,-1,2,1,3,0,-2,5,2,3,0,-5,7,3,4,0,-5,9,3,7,0,-7,14,

%T 8,11,0,-14,21,7,13,0,-14,26,11,20,0,-21,39,16,26,0,-32,51,20,34,0,

%U -38,65,25,47,0,-49,90,40,63,0,-74,118,44,77,0,-85,146,60,105,0,-111,196,80,132,0,-152

%N McKay-Thompson series of class 30f for the Monster group.

%H G. C. Greubel, <a href="/A112170/b112170.txt">Table of n, a(n) for n = 0..1000</a>

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Comm. Algebra 22, No. 13, 5175-5193 (1994).

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F Expansion of sqrt(2 + T15b), in powers of q, where T15b = A058513. - _G. C. Greubel_, Jun 30 2018

%e T30f = 1/q + q + q^3 - 2*q^7 + 2*q^9 + q^13 - q^17 + 2*q^19 + q^21 + ...

%t eta[q_] := q^(1/24)*QPochhammer[q]; nmax = 100; B:= (eta[q]/eta[q^25]);

%t d:= q*(eta[q^3]/eta[q^15])^2; c:= (eta[q^3]*eta[q^5]/(eta[q]* eta[q^15]))^3; T25A := B + 5/B; A:= (eta[q^3]/eta[q^75]); T15b:= 2 + (-5 + T25A*(A + 5/A))*(-B + A)*(1/(A*B))^2*(d^3/c)/q^3; a:= CoefficientList[ Series[(q*(T15b + 2) + O[q]^nmax)^(1/2), {q, 0, nmax}], q]; Table[a[[n]], {n, 1, nmax}] (* _G. C. Greubel_, Jun 30 2018, fixed by _Vaclav Kotesovec_, Jul 03 2018 *)

%K sign

%O 0,5

%A _Michael Somos_, Aug 28 2005