login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Unique sequence of numbers {1,2,3,...,11} where g.f. A(x) satisfies A(x) = B(B(B(..(B(x))..))) (11th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0.
3

%I #6 Mar 14 2015 00:56:09

%S 1,11,11,11,11,11,11,11,11,11,11,11,10,10,10,10,10,10,10,10,10,10,9,7,

%T 7,7,7,7,7,7,7,7,6,10,11,11,11,11,11,11,11,11,10,2,7,1,1,1,1,1,1,1,11,

%U 1,10,1,3,3,3,3,3,3,2,2,10,11,11,3,3,3,3,3,2,6,9,5,3,2,4,4,4,4,3,5,11,6,7

%N Unique sequence of numbers {1,2,3,...,11} where g.f. A(x) satisfies A(x) = B(B(B(..(B(x))..))) (11th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0.

%e G.f.: A(x) = x + 11*x^2 + 11*x^3 + 11*x^4 + 11*x^5 +...

%e then A(x) = B(B(B(B(B(B(B(B(B(B(B(x))))))))))) where

%e B(x) = x + x^2 - 9*x^3 + 131*x^4 - 2279*x^5 + 43161*x^6 +...

%e is the g.f. of A112123.

%o (PARI) {a(n,m=11)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); G=F+x*O(x^n);for(i=1,m-1,G=subst(F,x,G)); return(polcoeff(G,n,x)))}

%Y Cf. A112123, A112104-A112121, A112124-A112127.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Aug 27 2005