login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of Sum_{i=1..n} 1/(i*C(2*i,i)).
3

%I #11 May 11 2019 09:31:12

%S 1,2,12,5,280,2520,220,120120,144144,1361360,25865840,77597520,

%T 22881320,371821450,11473347600,9242418900,6876359661600,

%U 20629078984800,281488407200,118731810156960,254425307479200,8113340360725600,36090376087365600,9419588158802421600

%N Denominator of Sum_{i=1..n} 1/(i*C(2*i,i)).

%H C. Elsner, <a href="http://www.fq.math.ca/Papers1/43-1/paper43-1-5.pdf">On recurrence formulas for sums involving binomial coefficients</a>, Fib. Q., 43,1 (2005), 31-45.

%F Sum_{i >= 1} 1/(i*C(2*i, i)) = Pi*sqrt(3)/9.

%e 0, 1/2, 7/12, 3/5, 169/280, 1523/2520, 133/220, 72623/120120, 87149/144144, .... -> Pi*sqrt(3)/9.

%t Table[Sum[1/(i*Binomial[2i,i]),{i,n}],{n,0,30}]//Denominator (* _Harvey P. Dale_, May 11 2019 *)

%o (PARI) a(n) = denominator(sum(i=1, n, 1/(i*binomial(2*i, i)))); \\ _Michel Marcus_, Mar 10 2016

%Y Cf. A112099.

%K nonn,frac

%O 0,2

%A _N. J. A. Sloane_, Nov 30 2005

%E Definition corrected by _Wolfdieter Lang_, Oct 07 2008