Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Apr 11 2021 04:08:38
%S 12,18,30,42,48,72,78,90,102,108,120,132,138,162,168,180,192,198,210,
%T 222,228,240,252,258,282,288,300,312,318,330,342,348,372,378,390,402,
%U 408,420,432,438,450,462,468,492,498,510,522,528,540,552,558,582,588
%N Indices where A112053 is not zero.
%C These are all divisible by 6, as J(2,m) = +1 if m = 1 or 7 mod 8 and -1 if m = 3 or 5 mod 8 and J(3,m) = +1 if m = 1 or 11 mod 12, -1 if m = 5 or 7 mod 12 and 0 if m = 3 or 9 mod 12 (where Jacobi symbol J(i,m) returns +1 if i is quadratic residue modulo odd number m), it follows that only when i=24*n it holds that J(2,i-1)=J(2,i+1)=J(3,i-1)=J(3,i+1)=+1 and thus only then the function A112046 (and A112053) depends on values of J(k>3,m).
%t a112046[n_]:=Block[{i=1}, While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; Select[Range[1000], a112046[2#] - a112046[2# - 1] != 0 &] (* _Indranil Ghosh_, May 24 2017 *)
%o (Python)
%o from sympy import jacobi_symbol as J
%o def a112046(n):
%o i=1
%o while True:
%o if J(i, 2*n + 1)!=1: return i
%o else: i+=1
%o def a(n): return a112046(2*n) - a112046(2*n - 1)
%o print([n for n in range(1, 1001) if a(n)!=0]) # _Indranil Ghosh_, May 24 2017
%Y Cf. A112058(n) = 4*a(n). A112055(n) = a(n)/6.
%K nonn
%O 1,1
%A _Antti Karttunen_, Aug 27 2005