login
A112018
Primes p of the form 4k+3 where sigma(phi(sigma(p)))= phi(sigma(phi(p))).
0
114190259, 6364631939, 10296994891, 10429820759
OFFSET
1,1
COMMENTS
Between the first 480000000 primes, the equation (*): sigma(phi(sigma(x)))=phi(sigma(phi(x))) has 256 solutions q(i) and only four of them namely q(76),q(215),q(254) and q(256) are of the form 4k+3. Sequence A112017 gives composite solutions of the equation (*), which are of the form 4k+3.
MATHEMATICA
Do[If[Mod[Prime[m], 4]==3 && DivisorSigma[1, EulerPhi[Prime[m]+1 ==EulerPhi[DivisorSigma[1, Prime[m]-1]], Print[Prime[m]]], {m, 480000000}]
CROSSREFS
Cf. A112017.
Sequence in context: A171571 A208491 A205169 * A216010 A206751 A206062
KEYWORD
more,nonn
AUTHOR
Farideh Firoozbakht, Sep 15 2005
STATUS
approved