Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jun 06 2016 08:09:10
%S 1,61845,2165527,3045365,4461365,109182857,120068526,132268815,
%T 154514955,166825505,194565915,194621658,215365427,216753138,
%U 226262568,228330759,243430671,243771445,246455605,276514536,276751134,277093299,286551243,287337804,293644185
%N Numbers n with odd length such that sigma(n) = (d_1^d_2)*(d_3^d_4) *...*(d_(k-2)^d_(k-1))*d_k where d_1 d_2 ... d_k is the decimal expansion of n.
%C The term a(7) = 120068526 makes use of the convention 0^0 = 1. - _Giovanni Resta_, Jun 06 2016
%e 4461365 is in the sequence because sigma(4461365)=(4^4)*(6^1)*(3^6)*5.
%t Do[h=IntegerDigits[n]; k=Length[h]; If[h[[k]] != 0 && OddQ[k] && Select[Range[k/2], h[[2#-1]] == 0 ==h[[2# ]] &] == {} && DivisorSigma[1, n] == h[[k]]*Product[h[[2j-1]]^h[[2j]], {j, k/2}], Print[n]], {n, 10^7}]
%Y Cf. A112014, A112016.
%K base,nonn
%O 1,2
%A _Farideh Firoozbakht_, Sep 14 2005
%E a(6)-a(25) from _Giovanni Resta_, Jun 06 2016