login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n, k) = [x^k] (-1)^n*Sum_{k=0..n} E2(n, n-k)*(1+x)^(n-k) where E2(n, k) are the second-order Eulerian numbers. Triangle read by rows, T(n, k) for n >= 1 and 0 <= k <= n.
13

%I #93 Mar 02 2023 12:04:59

%S -1,3,2,-15,-20,-6,105,210,130,24,-945,-2520,-2380,-924,-120,10395,

%T 34650,44100,26432,7308,720,-135135,-540540,-866250,-705320,-303660,

%U -64224,-5040,2027025,9459450,18288270,18858840,11098780,3678840,623376,40320,-34459425,-183783600,-416215800

%N T(n, k) = [x^k] (-1)^n*Sum_{k=0..n} E2(n, n-k)*(1+x)^(n-k) where E2(n, k) are the second-order Eulerian numbers. Triangle read by rows, T(n, k) for n >= 1 and 0 <= k <= n.

%C Previous name was: A triangle that converts certain binomials into triangle A008276 (diagonals of signed Stirling1 triangle A008275).

%C Stirling1(n,n-m) = A008275(n,n-m) = Sum_{k=0..m-1}a(m,k)*binomial(n,2*m-k).

%C The unsigned column sequences start with A001147, A000906 = 2*A000457, 2*|A112000|, 4*|A112001|.

%C The general results on the convolution of the refined partition polynomials of A133932, with u_1 = 1 and u_n = -t otherwise, can be applied here to obtain results of convolutions of these unsigned polynomials. - _Tom Copeland_, Sep 20 2016

%D Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 152. Table C_{m, nu}.

%H Peter Bala, <a href="/A112007/a112007_Bala.txt">Diagonals of triangles with generating function exp(t*F(x)).</a>

%H S. Butler, P. Karasik, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Butler/butler7.html">A note on nested sums</a>, J. Int. Seq. 13 (2010), 10.4.4, page 4.

%H Tom Copeland, <a href="http://tcjpn.wordpress.com/2015/12/21/generators-inversion-and-matrix-binomial-and-integral-transforms/">Generators, Inversion, and Matrix, Binomial, and Integral Transforms</a>

%H EqWorld, <a href="http://eqworld.ipmnet.ru/en/auxiliary/aux-inttrans.htm">Integral Transforms</a>

%H D. J. Jeffrey, G. A. Kalugin, N. Murdoch, <a href="http://www.apmaths.uwo.ca/~djeffrey/Offprints/JeffreySYNASC2015paper17.pdf">Lagrange inversion and Lambert W</a>, Preprint 2015.

%H Wolfdieter Lang, <a href="/A111999/a111999.txt">First 10 rows.</a>

%H L. Takacs, <a href="http://dx.doi.org/10.1137/0403050">On the number of distinct forests</a>, SIAM J. Discrete Math., 3 (1990), 574-581. Table 3 gives an unsigned version of the triangle.

%F a(m, k)=0 if m<k+1; a(1, 0)=-1; a(m, -1):= 0; a(m, k) = -(2*m-k-1)*(a(m-1, k) + a(m-1, k-1)) else.

%F From _Tom Copeland_, May 05 2010 (updated Sep 12 2011): (Start)

%F The integral from 0 to infinity w.r.t. w of

%F exp[-w(u+1)] (1+u*z*w)^(1/z) gives a power series, f(u,z), in z for reversed row polynomials in u of A111999, related to an Euler transform of diagonals of A008275.

%F Let g(u,x) be obtained from f(u,z) by replacing z^n with x^(n+1)/(n+1)!;

%F g(u,x)= x - u^2 x^2/2! + (2 u^3 + 3 u^4) x^3/3! - (6 u^4 + 20 u^5 + 15 u^6) x^4/4! + ... , an e.g.f. associated to f(u,z).

%F Then g^(-1)(u,x)=(1+u)*x - log(1+u*x) is the comp. inverse of g(u,x) in x, and, consequently, A133932 is a refinement of A111999.

%F With h(u,x)= 1/(dg^(-1)/dx)= (1+u*x)/(1+(1+u)*u*x),

%F g(u,x)=exp[x*h(u,t)d/dt] t, evaluated at t=0. Also, dg(u,x)/dx = h(u,g(u,x)).

%F (End)

%F From _Tom Copeland_, May 06 2010: (Start)

%F For m,k>0, a(m,k) = Sum(j=2 to 2m-k+1): (-1)^(2m-k+1+j) C(2m-k+1,j) St1d(j,m),

%F where C(n,j) is the binomial coefficient and St1d(j,m) is the (j-m)-th element of the m-th subdiagonal of A008275 for (j-m)>0 and is 0 otherwise,

%F e.g., St1d(1,1) = 0, St1d(2,1) = -1, St1d(3,1) = -3, St1d(4,1) = -6. (End)

%F From _Tom Copeland_, Sep 03 2011 (updated Sep 12 2011): (Start)

%F The integral from 0 to infinity w.r.t. w of

%F exp[-w*(u+1)/u] (1+u*z*w)^(1/(u^2*z)) gives a power series, F(u,z), in z for the row polynomials in u of A111999.

%F Let G(u,x) be obtained from F(u,z) by replacing z^n with x^(n+1)/(n+1)!;

%F G(u,x) = x - x^2/2! + (3 + 2 u) x^3/3! - (15 + 20 u + 6 u^2) x^4/4! + ... , an e.g.f. for A111999 associated to F(u,z).

%F G^(-1)(u,x) = ((1+u)*u*x - log(1+u*x))/u^2 is the comp. inverse of G(u,x) in x.

%F With H(u,x) = 1/(dG^(-1)/dx) = (1+u*x)/(1+(1+u)*x),

%F G(u,x) = exp[x*H(u,t)d/dt] t, evaluated at t=0. Also, dG(u,x)/dx = H(u,G(u,x)).

%F (End)

%F From _Tom Copeland_, Sep 16 2011: (Start)

%F f(u,z) and F(u,z) are expressible in terms of the incomplete gamma function Γ(v,p)(see Laplace Transforms for Power-law Functions at EqWorld):

%F With K(p,s) = p^(-s-1) exp(p) Γ(s+1,p),

%F f(u,z) = K(p,s)/(u*z) with p=(u+1)/(u*z) and s=1/z , and

%F F(u,z) = K(p,s)/(u*z) with p=(u+1)/(u^2*z) and s=1/(u^2*z).

%F (End)

%F Diagonals of A008306 are reversed rows of A111999 (see P. Bala). - _Tom Copeland_, May 08 2012

%e Triangle starts:

%e [1] -1;

%e [2] 3, 2;

%e [3] -15, -20, -6;

%e [4] 105, 210, 130, 24;

%e [5] -945, -2520, -2380, -924, -120;

%e [6] 10395, 34650, 44100, 26432, 7308, 720;

%e [7] -135135, -540540, -866250, -705320, -303660, -64224, -5040;

%e [8] 2027025, 9459450, 18288270, 18858840, 11098780, 3678840, 623376, 40320.

%p CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)):

%p E2 := (n, k) -> combinat[eulerian2](n, k):

%p poly := n -> (-1)^n*add(E2(n, n-k)*(1+x)^(n-k), k = 0..n):

%p seq(CoeffList(poly(n)), n = 1..8); # _Peter Luschny_, Feb 05 2021

%t a[m_, k_] := a[m, k] = Which[m < k + 1, 0, And[m == 1, k == 0], -1, k == -1, 0, True, -(2 m - k - 1)*(a[m - 1, k] + a[m - 1, k - 1])]; Table[a[m, k], {m, 9}, {k, 0, m - 1}] // Flatten (* _Michael De Vlieger_, Sep 23 2016 *)

%Y Row sums give A032188(m+1)*(-1)^m, m>=1. Unsigned row sums give A032188(m+1), m>=1.

%Y Cf. A008517 (second-order Eulerian triangle) for a similar formula for |Stirling1(n, n-m)|.

%Y Cf. A000457, A000906, A001147, A008275, A008276, A008306, A112001, A133932,

%K sign,easy,tabl

%O 1,2

%A _Wolfdieter Lang_, Sep 12 2005

%E New name from _Peter Luschny_, Feb 05 2021