login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sixth convolution of Schroeder's (second problem) numbers A001003(n), n>=0.
1

%I #13 Mar 17 2017 00:47:17

%S 1,6,33,176,930,4908,25954,137712,733539,3922834,21060099,113481504,

%T 613619332,3328768344,18112655748,98833261600,540705999621,

%U 2965360687518,16299708148901,89784615643728,495545294427558

%N Sixth convolution of Schroeder's (second problem) numbers A001003(n), n>=0.

%H Vincenzo Librandi, <a href="/A111994/b111994.txt">Table of n, a(n) for n = 0..200</a>

%F G.f.: ((1+x-sqrt(1-6*x+x^2))/(4*x))^6.

%F a(n)= (6/n)*Sum_{k=1,..,n} binomial(n,k)*binomial(n+k+5,k-1).

%F a(n) = 6*hypergeom([1-n, n+7], [2], -1), n>=1, a(0)=1.

%F Recurrence: n*(n+6)*a(n) = (7*n^2+30*n+5)*a(n-1) - (7*n^2+12*n-22)*a(n-2) + (n-3)*(n+3)*a(n-3). - _Vaclav Kotesovec_, Oct 18 2012

%F a(n) ~ 3*sqrt(3*sqrt(2)-4)*(58-41*sqrt(2)) * (3+2*sqrt(2))^(n+6)/(16*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 18 2012

%t CoefficientList[Series[((1+x-Sqrt[1-6*x+x^2])/(4*x))^6, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 18 2012 *)

%o (PARI) x='x+O('x^50); Vec(((1+x-sqrt(1-6*x+x^2))/(4*x))^6) \\ _G. C. Greubel_, Mar 16 2017

%Y Cf. Sixth column of convolution triangle A011117.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Sep 12 2005