login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(x) = Sum_{n>=0} (2*n+1) * 8^n * x^(n*(n+1)/2).
6

%I #32 Sep 08 2022 08:45:21

%S 1,24,0,320,0,0,3584,0,0,0,36864,0,0,0,0,360448,0,0,0,0,0,3407872,0,0,

%T 0,0,0,0,31457280,0,0,0,0,0,0,0,285212672,0,0,0,0,0,0,0,0,2550136832,

%U 0,0,0,0,0,0,0,0,0,22548578304,0,0,0,0,0,0,0,0,0,0,197568495616,0,0,0,0,0,0

%N G.f.: A(x) = Sum_{n>=0} (2*n+1) * 8^n * x^(n*(n+1)/2).

%C Define F(x,q) = Sum_{n>=0} q^n*(2*n+1)*x^(n*(n+1)/2).

%C (1) F(x,q)^(1/3) is an integer series in x when q == -1, 0, 3 or 6 (mod 9).

%C (2) For q = -1 we have the famous result of Jacobi (Hardy and Wright, Th. 357): F(x,-1)^(1/3) = (1 - 3*x + 5*x^3 - 7*x^6 + 9*x^10 + ...)^(1/3) = 1 + Sum_{n>=1} (-1)^n*[x^(n*(3*n-1)/2)+x^(n*(3*n+1)/2)] = Product_{k>=1} (1-x^k).

%C Concerning (1): For q == 0 (mod 3) we see that F == 1 (mod 9), which by the Heninger-Rains-Sloane paper implies that F^(1/3) has integer coefficients. For q == -1 (mod 9) the same assertion follows from the Jacobi identity mentioned above. For q = 8, F(x,8) = A(x), the current sequence, we see that A == 1 (mod 8), so A^(1/3) == 1 (mod 8) and then, again by our paper, A^(1/12) has integer coefficients. - Eric Rains and _N. J. A. Sloane_, Nov 06 2005

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 285.

%H G. C. Greubel, <a href="/A111983/b111983.txt">Table of n, a(n) for n = 0..5050</a>

%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0509316">On the Integrality of n-th Roots of Generating Functions</a>, arXiv:math/0509316 [math.NT], 2005-2006.

%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://doi.org/10.1016/j.jcta.2006.03.018">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.

%e A(x) = 1 + 3*8*x + 5*8^2*x^3 + 7*8^3*x^6 + 9*8^4*x^10 + ... = 1 + 24*x + 320*x^3 + 3584*x^6 + 36864*x^10 + 360448*x^15 + 3407872*x^21 + 31457280*x^28 + 285212672*x^36 + 2550136832*x^45 + ...

%e Surprisingly, A(x)^(1/3) is an integer series (A111984):

%e A(x)^(1/3) = 1 + 8*x - 64*x^2 + 960*x^3 - 15360*x^4 +- ...

%e In fact (see proof in Comments section), A(x)^(1/12) is also an integer series (A111985):

%e A(x)^(1/12) = 1 + 2*x - 22*x^2 + 364*x^3 - 6490*x^4 +- ...

%p add((2*n+1) * 8^n * x^(n*(n+1)/2), n=0..50);

%t CoefficientList[Sum[(2n+1) 8^n x^(n(n+1)/2), {n, 0, 12}], x] (* _Jean-François Alcover_, Jul 26 2018 *)

%o (PARI) a(n)=polcoeff(sum(k=0,sqrtint(2*n+1),(2*k+1)*8^k*x^(k*(k+1)/2)+x*O(x^n)),n)

%o (Magma) m:=80; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[(2*n+1)*8^n*x^Binomial(n+1,2): n in [0..m]]) )); // _G. C. Greubel_, Oct 24 2019

%o (Sage)

%o def A052961_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( sum((2*n+1)*8^n*x^binomial(n+1,2) for n in (0..13))).list()

%o A052961_list(80) # _G. C. Greubel_, Oct 24 2019

%Y Cf. A111984 (g.f. A(x)^(1/3)), A111985 (g.f. A(x)^(1/12)).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Aug 25 2005