login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A078343(n) + (-1)^n.
2

%I #22 May 26 2024 08:24:54

%S 0,1,4,7,20,45,112,267,648,1561,3772,9103,21980,53061,128104,309267,

%T 746640,1802545,4351732,10506007,25363748,61233501,147830752,

%U 356895003,861620760,2080136521,5021893804,12123924127,29269742060,70663408245

%N a(n) = A078343(n) + (-1)^n.

%C This sequence is a companion sequence to A111954 (compare formula / program code). Three other companion sequences (i.e., they are generated by the same floretion given in the program code) are A105635, A097076 and A100828.

%C Floretion Algebra Multiplication Program, FAMP Code: 4kbasejseq[J*D] with J = - .25'i + .25'j + .5'k - .25i' + .25j' + .5k' - .5'kk' - .25'ik' - .25'jk' - .25'ki' - .25'kj' - .5e and D = + .5'i - .25'j + .25'k + .5i' - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e. (an initial term 0 was added to the sequence)

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,1).

%F a(n) + a(n+1) = A048655(n).

%F a(n) = a(n-1) + 3*a(n-2) + a(n-3), n >= 3; a(n) = (-1/4*sqrt(2)+1)*(1-sqrt(2))^n + (1/4*sqrt(2)+1)*(1+sqrt(2))^n - (-1)^n;

%F G.f.: -x*(1+3*x) / ( (1+x)*(x^2+2*x-1) ). - _R. J. Mathar_, Oct 02 2012

%F E.g.f.: cosh(x) - exp(x)*cosh(sqrt(2)*x) - sinh(x) + 3*exp(x)*sinh(sqrt(2)*x)/sqrt(2). - _Stefano Spezia_, May 26 2024

%t LinearRecurrence[{1,3,1},{0,1,4},40] (* _Harvey P. Dale_, Mar 12 2015 *)

%Y Cf. A078343, A000129, A001333, A111954, A111956, A007070, A077995, A100828, A097076, A105635, A048655.

%K easy,nonn

%O 0,3

%A _Creighton Dement_, Aug 25 2005