login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of x(n) = Sum_{k=1..n} ((odd part of k)/(k^2)).
6

%I #13 Dec 25 2019 08:35:10

%S 1,4,12,48,240,240,1680,6720,20160,4032,44352,44352,576576,576576,

%T 2882880,11531520,196035840,196035840,3724680960,3724680960,

%U 3724680960,3724680960,85667662080,85667662080,428338310400,428338310400

%N Denominator of x(n) = Sum_{k=1..n} ((odd part of k)/(k^2)).

%C Numerator of x(n) = A111929(n);

%C x(n) = A111929(n)/a(n) does not converge.

%D G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Sect. 6, Problem 50.

%H Robert Israel, <a href="/A111930/b111930.txt">Table of n, a(n) for n = 1..2296</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OddPart.html">Odd Part</a>

%p map(denom, ListTools:-PartialSums([seq(1/k/2^padic:-ordp(k,2),k=1..100)])): # _Robert Israel_, Dec 28 2017

%t od[k_] := k/2^IntegerExponent[k, 2];

%t a[n_] := Sum[od[k]/k^2, {k, 1, n}] // Denominator;

%t Array[a, 25] (* _Jean-François Alcover_, Mar 08 2019 *)

%Y Cf. A000265, A111919, A111921, A111923.

%K nonn,frac

%O 1,2

%A _Reinhard Zumkeller_, Aug 21 2005