login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111919
Denominator of x(n) = Sum_{k=1..n} ((odd part of k)/(k^3)).
6
1, 8, 72, 576, 14400, 1600, 78400, 627200, 50803200, 50803200, 6147187200, 6147187200, 1038874636800, 1038874636800, 1038874636800, 8310997094400, 2401878160281600, 266875351142400, 96342001762406400, 96342001762406400
OFFSET
1,2
COMMENTS
Numerator of x(n) = A111918(n);
x(n) = A111918(n)/a(n) ---> Pi*Pi/7 = 6*zeta(2)/7.
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Sect. 6, Problem 50.
LINKS
Eric Weisstein's World of Mathematics, Odd Part
Eric Weisstein's World of Mathematics, Riemann Zeta Function zeta(2)
MAPLE
S:= 0: Res:= NULL:
for k from 1 to 25 do
S:= S + 1/k^2/2^padic:-ordp(k, 2);
Res:= Res, denom(S);
od:
Res; # Robert Israel, Jan 13 2020
MATHEMATICA
oddPart[n_] := n/2^IntegerExponent[n, 2];
x[n_] := Sum[oddPart[k]/k^3, {k, 1, n}];
a[n_] := Denominator[x[n]];
Array[a, 20] (* Jean-François Alcover, Dec 13 2021 *)
PROG
(Magma) val:=func<n|n/2^Valuation(n, 2)>; [Denominator(&+[val(k)/(k^3):k in [1..n]]):n in [1..20]]; // Marius A. Burtea, Jan 13 2020
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Reinhard Zumkeller, Aug 21 2005
STATUS
approved