Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jun 13 2017 22:38:28
%S 0,1,0,3,3,0,27,9,9,0,486,81,27,27,0,7776,1458,243,81,81,0,-2423196,
%T 23328,4374,729,243,243,0,-97338996,-7269588,69984,13122,2187,729,729,
%U 0,5883879500784,-292016988,-21808764,209952,39366,6561,2187,2187,0
%N Matrix log of triangle A111840, which shifts columns left and up under matrix cube; these terms are the result of multiplying each element in row n and column k by (n-k)!.
%C Column k equals 3^k multiplied by column 0 (A111844) when ignoring zeros above the diagonal.
%F T(n, k) = 3^k*T(n-k, 0) = 3^k*A111844(n-k) for n>=k>=0.
%e Matrix log of A111840, with factorial denominators, begins:
%e 0;
%e 1/1!, 0;
%e 3/2!, 3/1!, 0;
%e 27/3!, 9/2!, 9/1!, 0;
%e 486/4!, 81/3!, 27/2!, 27/1!, 0;
%e 7776/5!, 1458/4!, 243/3!, 81/2!, 81/1!, 0;
%e -2423196/6!, 23328/5!, 4374/4!, 729/3!, 243/2!, 243/1!, 0;
%o (PARI) T(n,k,q=3)=local(A=Mat(1),B);if(n<k || k<0,0, for(m=1,n+1,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i,B[i,j]=1,if(j==1,B[i,j]=(A^q)[i-1,1], B[i,j]=(A^q)[i-1,j-1]));));A=B); B=sum(i=1,#A,-(A^0-A)^i/i);return((n-k)!*B[n+1,k+1]))
%Y Cf. A111840 (triangle), A111844 (column 0), A111815 (variant), A111941 (q=-1), A111810 (q=2), A111848 (q=4).
%K frac,sign,tabl
%O 0,4
%A _Paul D. Hanna_, Aug 23 2005