login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111812
Column 3 of triangle A098539, which shifts columns left and up under matrix square.
0
1, 8, 72, 888, 16392, 479736, 23196168, 1909718520, 273790460424, 69532461669880, 31699923943776776, 26220200137673186808, 39689067731528646091272, 110732781183212424923225592
OFFSET
0,2
FORMULA
G.f.: A(x) = 1 + Sum_{n>=1} 8^n/n!*Product_{j=0..n-1} L(2^j*x) where L(x) = e.g.f. of A111811 (column 0 of matrix log of A098539) satisfies: x = L(x) - L(x)*L(2*x)/2! + L(x)*L(2*x)*L(2^2*x)/3! - L(x)*L(2*x)*L(2^2*x)*L(2^3*x)/4! + ...
EXAMPLE
A(x) = 1 + 8*x + 72*x^2 + 888*x^3 + 16392*x^4 + 479736*x^5 +...
PROG
(PARI) {a(n, q=2)=local(A=Mat(1), B); if(n<0, 0, for(m=1, n+4, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, if(j==1, B[i, j]=(A^q)[i-1, 1], B[i, j]=(A^q)[i-1, j-1])); )); A=B); return(A[n+4, 4]))}
CROSSREFS
Sequence in context: A013992 A279156 A129103 * A138433 A242597 A339469
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 22 2005
STATUS
approved