login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Left half of trinomial triangle (A027907), triangle read by rows.
30

%I #26 Feb 28 2017 22:34:32

%S 1,1,1,1,2,3,1,3,6,7,1,4,10,16,19,1,5,15,30,45,51,1,6,21,50,90,126,

%T 141,1,7,28,77,161,266,357,393,1,8,36,112,266,504,784,1016,1107,1,9,

%U 45,156,414,882,1554,2304,2907,3139,1,10,55,210,615,1452,2850,4740,6765,8350

%N Left half of trinomial triangle (A027907), triangle read by rows.

%C Consider a doubly infinite chessboard with squares labeled (n,k), ranks or rows n in Z, files or columns k in Z (Z denotes ...,-2,-1,0,1,2,... ); number of king-paths of length n from (0,0) to (n,k), 0 <= k <= n, is T(n,n-k). - _Harrie Grondijs_, May 27 2005. Cf. A026300, A114929, A114972.

%C Triangle of numbers C^(2)(n-1,k), n>=1, of combinations with repetitions from elements {1,2,...,n} over k, such that every element i, i=1,...,n, appears in a k-combination either 0 or 1 or 2 times (cf. also A213742-A213745). - _Vladimir Shevelev_ and _Peter J. C. Moses_, Jun 19 2012

%D Harrie Grondijs, Neverending Quest of Type C, Volume B - the endgame study-as-struggle.

%H G. C. Greubel, <a href="/A111808/b111808.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TrinomialTriangle.html">Trinomial Triangle</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TrinomialCoefficient.html">Trinomial Coefficient</a>

%F (1 + x + x^2)^n = Sum(T(n,k)*x^k: 0<=k<=n) + Sum(T(n,k)*x^(2*n-k): 0<=k<n);

%F T(n, k) = A027907(n, k) = Sum_{i=0,..,(k/2)} binomial(n, n-k+2*i) * binomial(n-k+2*i, i), 0<=k<=n.

%F T(n, k) = GegenbauerC(k, -n, -1/2). - _Peter Luschny_, May 09 2016

%p T := (n,k) -> simplify(GegenbauerC(k, -n, -1/2)):

%p for n from 0 to 9 do seq(T(n,k), k=0..n) od; # _Peter Luschny_, May 09 2016

%t Table[GegenbauerC[k, -n, -1/2], {n,0,10}, {k,0,n}] // Flatten (* _G. C. Greubel_, Feb 28 2017 *)

%Y Row sums give A027914; central terms give A027908;

%Y T(n, 0) = 0;

%Y T(n, 1) = n for n>1;

%Y T(n, 2) = A000217(n) for n>1;

%Y T(n, 3) = A005581(n) for n>2;

%Y T(n, 4) = A005712(n) for n>3;

%Y T(n, 5) = A000574(n) for n>4;

%Y T(n, 6) = A005714(n) for n>5;

%Y T(n, 7) = A005715(n) for n>6;

%Y T(n, 8) = A005716(n) for n>7;

%Y T(n, 9) = A064054(n-5) for n>8;

%Y T(n, n-5) = A098470(n) for n>4;

%Y T(n, n-4) = A014533(n-3) for n>3;

%Y T(n, n-3) = A014532(n-2) for n>2;

%Y T(n, n-2) = A014531(n-1) for n>1;

%Y T(n, n-1) = A005717(n) for n>0;

%Y T(n, n) = central terms of A027907 = A002426(n).

%K nonn,tabl

%O 1,5

%A _Reinhard Zumkeller_, Aug 17 2005

%E Corrected and edited by _Johannes W. Meijer_, Oct 05 2010