Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #46 Feb 28 2024 16:23:12
%S 1,1,7,13,25,43,73,121,199,325,529,859,1393,2257,3655,5917,9577,15499,
%T 25081,40585,65671,106261,171937,278203,450145,728353,1178503,1906861,
%U 3085369,4992235,8077609,13069849,21147463,34217317,55364785,89582107
%N a(n) = a(n-1) + a(n-2) + 5 where a(0) = a(1) = 1.
%C a(n+1)/a(n) converges to the golden ratio. - _Stefan Steinerberger_, Nov 19 2005
%C This is the sequence A(1,1;1,1;5) of the family of sequences [a,b:c,d:k] considered by _Gary Detlefs_, and treated as A(a,b;c,d;k) in the W. Lang link given below. - _Wolfdieter Lang_, Oct 17 2010
%H Reinhard Zumkeller, <a href="/A111721/b111721.txt">Table of n, a(n) for n = 0..1000</a>
%H Taras Goy and Mark Shattuck, <a href="https://doi.org/10.2478/amsil-2023-0027">Determinants of Toeplitz-Hessenberg Matrices with Generalized Leonardo Number Entries</a>, Ann. Math. Silesianae (2023). See p. 13.
%H Wolfdieter Lang, <a href="/A111721/a111721.pdf">Notes on certain inhomogeneous three term recurrences</a>.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1).
%F For n > 1: a(n) = a(n-1) + 6*F(n-1). (a(n)-1)/6 = A000071(n+1) = F(n+1) - 1. Hence a(n) = 6*F(n+1) - 5. - _Jonathan Vos Post_, Nov 19 2005
%F G.f.: (5*x^2-x+1)/(x^3-2*x+1). - _Stefan Steinerberger_, Nov 19 2005
%e a(2) = a(0) + a(1) + 5 = 1 + 1 + 5 = 7.
%t Join[{a=1,b=1},Table[c=a+b+5;a=b;b=c,{n,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 13 2011 *)
%t Nest[Append[#, #[[-1]] + #[[-2]] + 5] &, {1, 1}, 34] (* or *)
%t CoefficientList[Series[(5 x^2 - x + 1)/(x^3 - 2 x + 1), {x, 0, 35}], x] (* _Michael De Vlieger_, Dec 17 2017 *)
%o (MuPAD) a := 1; b := 1; for n from 1 to 50 do c := a+b+5; print(c); a := b; b := c; end_for; // _Stefan Steinerberger_
%o (Sage) from sage.combinat.sloane_functions import recur_gen2b
%o it =recur_gen2b(1,1,1,1, lambda n: 5)
%o [next(it) for i in range(38)] # _Zerinvary Lajos_, Jul 16 2008
%o (Haskell)
%o a111721 n = a111721_list !! n
%o a111721_list = 1 : 1 :
%o map (+ 5) (zipWith (+) a111721_list (tail a111721_list))
%o -- _Reinhard Zumkeller_, Nov 05 2011
%o (PARI) x='x+O('x^99); Vec((5*x^2-x+1)/(x^3-2*x+1)) \\ _Altug Alkan_, Dec 17 2017
%Y Cf. A000045, A000071.
%K nonn,easy
%O 0,3
%A _Parthasarathy Nambi_, Nov 17 2005
%E More terms from _Stefan Steinerberger_, Nov 19 2005