login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lah numbers: a(n) = n!*binomial(n-1,9)/10!.
1

%I #14 May 02 2022 02:59:30

%S 1,110,7260,377520,17177160,721440720,28857628800,1121325004800,

%T 42890681433600,1629845894476800,61934143990118400,

%U 2364758225077248000,91043191665474048000,3543681152517682176000,139722285442125754368000

%N Lah numbers: a(n) = n!*binomial(n-1,9)/10!.

%D Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.

%D John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.

%F E.g.f.: ((x/(1-x))^10)/10!.

%F a(n) = (n!/10!)*binomial(n-1, 10-1).

%F If we define f(n,i,x) = Sum_{k=1..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i)*x^(k-j) then a(n) = (-1)^n*f(n,10,-10), (n>=10). - _Milan Janjic_, Mar 01 2009

%F From _Amiram Eldar_, May 02 2022: (Start)

%F Sum_{n>=10} 1/a(n) = 5086710*(gamma - Ei(1)) + 50940*e + 91914449/14, where gamma = A001620, Ei(1) = A091725 and e = A001113.

%F Sum_{n>=10} (-1)^n/a(n) = 413689770*(gamma - Ei(-1)) - 246749400/e - 3342795017/14, where Ei(-1) = -A099285. (End)

%t Table[n! * Binomial[n - 1, 9]/10!, {n, 10, 25}] (* _Amiram Eldar_, May 02 2022 *)

%Y Column 10 of unsigned A008297 and A111596.

%Y Column 9: A111599.

%Y Cf. A001113, A001620, A091725, A099285.

%K nonn,easy

%O 10,2

%A _Wolfdieter Lang_, Aug 23 2005