login
a(n) = ((1+sqrt(8))*(2+sqrt(2))^n + (1-sqrt(8))*(2-sqrt(2))^n)/2.
5

%I #41 May 26 2024 08:25:12

%S 1,6,22,76,260,888,3032,10352,35344,120672,412000,1406656,4802624,

%T 16397184,55983488,191139584,652591360,2228086272,7607162368,

%U 25972476928,88675582976,302757378048,1033678346240,3529198628864,12049437822976,41139354034176,140458540490752

%N a(n) = ((1+sqrt(8))*(2+sqrt(2))^n + (1-sqrt(8))*(2-sqrt(2))^n)/2.

%C Binomial transform of A048655: generalized Pellian with second term equal to 5.

%C Floretion Algebra Multiplication Program, FAMP Code: 1vesseq[K*J] with K = + .5'i + .5'j + .5k' + .5'kk' and J = + .5i' + .5j' + 2'kk' + .5'ki' + .5'kj'.

%H G. C. Greubel, <a href="/A111566/b111566.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2).

%F a(n) = 4*a(n-1) - 2*a(n-2), a(0) = 1, a(1) = 6.

%F Program "FAMP" returns: a(n) = A007052(n) - A006012(n) + A111567(n).

%F From _R. J. Mathar_, Apr 02 2008: (Start)

%F O.g.f.: (1+2*x)/(1-4*x+2*x^2).

%F a(n) = A007070(n) + 2*A007070(n-1). (End)

%F a(n) = Sum_{k=0..n} A207543(n,k)*2^k. - _Philippe Deléham_, Feb 25 2012

%F a(n) = 4*A007070(n) - A007052(n+1). - _Yuriy Sibirmovsky_, Sep 13 2016

%F E.g.f.: exp(2*x)*(cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x)). - _Stefano Spezia_, May 26 2024

%t LinearRecurrence[{4,-2},{1,6},30] (* _Harvey P. Dale_, Jan 31 2015 *)

%o (Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((1+2*r)*(2+r)^n+(1-2*r)*(2-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Jul 27 2009

%o (PARI) x='x+O('x^30); Vec((1+2*x)/(1-4*x+2*x^2)) \\ _G. C. Greubel_, Jan 27 2018

%Y Cf. A007052, A006012, A111567, A007070.

%K easy,nonn

%O 0,2

%A _Creighton Dement_, Aug 06 2005

%E Edited by _N. J. A. Sloane_, Jul 27 2009 using new definition from Al Hakanson (hawkuu(AT)gmail.com)