login
a(1) = 3, a(n) = least k such that concatenation of n copies of k with all previous concatenation gives a prime.
6

%I #8 Mar 04 2018 03:16:45

%S 3,1,1,11,113,7,23,41,37,141,733,241,3,791,781,701,239,441,2019,189,

%T 2071,401,851,463,4421,497,2267,213,1653,1683,1227,667,3261,6673,5799,

%U 3579,1907,6483,7813,2443,1923,11439,6657,7861,1847,7521,8277,8459

%N a(1) = 3, a(n) = least k such that concatenation of n copies of k with all previous concatenation gives a prime.

%e 3,311,311111,31111111111111 are all prime.

%e 31111111111111 = one copy of 3, two copies of 1, three copies of 1, four copies of 11.

%o (PARI) { x=3; for(n=2,50, k=0; until(ispseudoprime(y), k++; y=eval(concat(Str(x),concat(vector(n,i,Str(k))))); ); print1(k,", "); x=y; ) } \\ _Max Alekseyev_, May 18 2009

%Y Cf. A111471, A111472, A111474.

%K base,hard,nonn

%O 1,1

%A _Amarnath Murthy_, Aug 05 2005

%E More terms from _Max Alekseyev_, May 18 2009