|
|
A111420
|
|
a(n) = Sum_{q=0..n} Stirling2(n+1,q)^2*q!.
|
|
3
|
|
|
0, 1, 19, 315, 6601, 178923, 6161065, 262268499, 13470911521, 818285112123, 57836073876505, 4693152951066099, 432360761046527041, 44794795435021490043, 5176959026638375267225, 662704551819559746282579, 93384393940399990403502241, 14406589076081640590750974203
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..17.
|
|
MAPLE
|
a:= n-> add(Stirling2(n+1, q)^2*q!, q=0..n):
seq(a(n), n=0..19); # Alois P. Heinz, May 11 2020
|
|
MATHEMATICA
|
Table[Sum[StirlingS2[n+1, k]^2 * k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 12 2018 *)
|
|
CROSSREFS
|
Cf. A023997, A014235.
Sequence in context: A142430 A180845 A138943 * A166965 A137352 A027541
Adjacent sequences: A111417 A111418 A111419 * A111421 A111422 A111423
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Nov 14 2005
|
|
STATUS
|
approved
|
|
|
|