Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #64 Sep 06 2024 22:23:53
%S 1,3,1,10,5,1,35,21,7,1,126,84,36,9,1,462,330,165,55,11,1,1716,1287,
%T 715,286,78,13,1,6435,5005,3003,1365,455,105,15,1,24310,19448,12376,
%U 6188,2380,680,136,17,1,92378,75582,50388
%N Right-hand side of odd-numbered rows of Pascal's triangle.
%C Riordan array (c(x)/sqrt(1-4*x),x*c(x)^2) where c(x) is g.f. of A000108. Unsigned version of A113187. Diagonal sums are A014301(n+1).
%C Triangle T(n,k),0<=k<=n, read by rows defined by :T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=3*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+2*T(n-1,k)+T(n-1,k+1) for k>=1. - _Philippe Deléham_, Mar 22 2007
%C Reversal of A122366. - _Philippe Deléham_, Mar 22 2007
%C Column k has e.g.f. exp(2x)(Bessel_I(k,2x)+Bessel_I(k+1,2x)). - _Paul Barry_, Jun 06 2007
%C This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - _Philippe Deléham_, Sep 25 2007
%C Diagonal sums are A014301(n+1). - _Paul Barry_, Mar 08 2011
%C This triangle T(n,k) appears in the expansion of odd powers of Fibonacci numbers F=A000045 in terms of F-numbers with multiples of odd numbers as indices. See the Ozeki reference, p. 108, Lemma 2. The formula is: F_l^(2*n+1) = sum(T(n,k)*(-1)^((n-k)*(l+1))* F_{(2*k+1)*l}, k=0..n)/5^n, n >= 0, l >= 0. - _Wolfdieter Lang_, Aug 24 2012
%C Central terms give A052203. - _Reinhard Zumkeller_, Mar 14 2014
%C This triangle appears in the expansion of (4*x)^n in terms of the polynomials Todd(n, x):= T(2*n+1, sqrt(x))/sqrt(x) = sum(A084930(n,m)*x^m), n >= 0. This follows from the inversion of the lower triangular Riordan matrix built from A084930 and comparing the g.f. of the row polynomials. - _Wolfdieter Lang_, Aug 05 2014
%C From _Wolfdieter Lang_, Aug 15 2014: (Start)
%C This triangle is the inverse of the signed Riordan triangle (-1)^(n-m)*A111125(n,m).
%C This triangle T(n,k) appears in the expansion of x^n in terms of the polynomials todd(k, x):= T(2*k+1, sqrt(x)/2)/(sqrt(x)/2) = S(k, x-2) - S(k-1, x-2) with the row polynomials T and S for the triangles A053120 and A049310, respectively: x^n = sum(T(n,k)*todd(k, x), k=0..n). Compare this with the preceding comment.
%C The A- and Z-sequences for this Riordan triangle are [1, 2, 1, repeated 0] and [3, 1, repeated 0]. For A- and Z-sequences for Riordan triangles see the W. Lang link under A006232. This corresponds to the recurrences given in the Philippe Deléham, Mar 22 2007 comment above. (End)
%H Reinhard Zumkeller, <a href="/A111418/b111418.txt">Rows n = 0..125 of triangle, flattened</a>
%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Barry5/barry223.html">On the Hurwitz Transform of Sequences</a>, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
%H E. Deutsch, L. Ferrari and S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.aam.2004.05.002">Production Matrices</a>, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
%H Asamoah Nkwanta and Earl R. Barnes, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Nkwanta/nkwanta2.html">Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind</a>, Journal of Integer Sequences, Article 12.3.3, 2012.
%H A. Nkwanta, A. Tefera, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Nkwanta/nkwanta4.html">Curious Relations and Identities Involving the Catalan Generating Function and Numbers</a>, Journal of Integer Sequences, 16 (2013), #13.9.5.
%H K. Ozeki, <a href="http://www.fq.math.ca/Papers1/46_47-2/Ozeki.pdf">On Melham's sum</a>, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
%H Sun, Yidong; Ma, Luping <a href="https://doi.org/10.1016/j.ejc.2014.01.004">Minors of a class of Riordan arrays related to weighted partial Motzkin paths</a>. Eur. J. Comb. 39, 157-169 (2014), Table 2.2.
%F T(n, k) = C(2*n+1, n-k).
%F Sum_{k=0..n} T(n, k) = 4^n.
%F Sum_{k, 0<=k<=n}(-1)^k *T(n,k) = binomial(2*n,n) = A000984(n). - _Philippe Deléham_, Mar 22 2007
%F T(n,k) = sum{j=k..n, C(n,j)*2^(n-j)*C(j,floor((j-k)/2))}. - _Paul Barry_, Jun 06 2007
%F Sum_{k, k>=0} T(m,k)*T(n,k) = T(m+n,0)= A001700(m+n). - _Philippe Deléham_, Nov 22 2009
%F G.f. row polynomials: ((1+x) - (1-x)/sqrt(1-4*z))/(2*(x - (1+x)^2*z))
%F (see the Riordan property mentioned in a comment above). - _Wolfdieter Lang_, Aug 05 2014
%e From _Wolfdieter Lang_, Aug 05 2014: (Start)
%e The triangle T(n,k) begins:
%e n\k 0 1 2 3 4 5 6 7 8 9 10 ...
%e 0: 1
%e 1: 3 1
%e 2: 10 5 1
%e 3: 35 21 7 1
%e 4: 126 84 36 9 1
%e 5: 462 330 165 55 11 1
%e 6: 1716 1287 715 286 78 13 1
%e 7: 6435 5005 3003 1365 455 105 15 1
%e 8: 24310 19448 12376 6188 2380 680 136 17 1
%e 9: 92378 75582 50388 27132 11628 3876 969 171 19 1
%e 10: 352716 293930 203490 116280 54264 20349 5985 1330 210 21 1
%e ...
%e Expansion examples (for the Todd polynomials see A084930 and a comment above):
%e (4*x)^2 = 10*Todd(n, 0) + 5*Todd(n, 1) + 1*Todd(n, 2) = 10*1 + 5*(-3 + 4*x) + 1*(5 - 20*x + 16*x^2).
%e (4*x)^3 = 35*1 + 21*(-3 + 4*x) + 7*(5 - 20*x + 16*x^2) + (-7 + 56*x - 112*x^2 +64*x^3)*1. (End)
%e ---------------------------------------------------------------------
%e Production matrix is
%e 3, 1,
%e 1, 2, 1,
%e 0, 1, 2, 1,
%e 0, 0, 1, 2, 1,
%e 0, 0, 0, 1, 2, 1,
%e 0, 0, 0, 0, 1, 2, 1,
%e 0, 0, 0, 0, 0, 1, 2, 1,
%e 0, 0, 0, 0, 0, 0, 1, 2, 1,
%e 0, 0, 0, 0, 0, 0, 0, 1, 2, 1
%e - _Paul Barry_, Mar 08 2011
%e Application to odd powers of Fibonacci numbers F, row n=2:
%e F_l^5 = (10*(-1)^(2*(l+1))*F_l + 5*(-1)^(1*(l+1))*F_{3*l} + 1*F_{5*l})/5^2, l >= 0. - _Wolfdieter Lang_, Aug 24 2012
%t Table[Binomial[2*n+1, n-k], {n,0,10}, {k,0,n}] (* _G. C. Greubel_, May 22 2017 *)
%t T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
%t T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
%t Table[T[n, k, 3, 2], {n, 0, 10}, {k, 0, n}] // Flatten (* _G. C. Greubel_, May 22 2017 *)
%o (Haskell)
%o a111418 n k = a111418_tabl !! n !! k
%o a111418_row n = a111418_tabl !! n
%o a111418_tabl = map reverse a122366_tabl
%o -- _Reinhard Zumkeller_, Mar 14 2014
%Y Cf. A000108, A113187.
%Y Columns are : A001700, A002054, A003516, A030053, A030054, A030055, A030056.
%K easy,nonn,tabl
%O 0,2
%A _Philippe Deléham_, Nov 13 2005