login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = f(f(n+1)) - f(f(n)), where f(0) = 0 and f(m) = tau(m) = A000005(m) for m > 0.
2

%I #18 Jun 25 2022 21:43:42

%S 1,1,0,0,0,1,-1,1,-1,1,-1,2,-2,1,0,-1,0,2,-2,2,-1,0,-1,2,-2,1,0,1,-2,

%T 2,-2,2,-1,0,0,0,-1,1,0,1,-2,2,-2,2,0,-1,-1,2,-2,2,-1,1,-2,2,-1,1,-1,

%U 0,-1,4,-4,1,1,-2,1,1,-2,2,-1,1,-2,4,-4,1,1,0,-1,1,-2,2,-2,1,-1,4,-3,0,0,1,-2,4,-3,1,-1,0,0,3,-4,2,0,-1,-1

%N a(n) = f(f(n+1)) - f(f(n)), where f(0) = 0 and f(m) = tau(m) = A000005(m) for m > 0.

%H Antti Karttunen, <a href="/A111407/b111407.txt">Table of n, a(n) for n = 0..20000</a>

%o (PARI)

%o f = numdiv;

%o a(n) = f(f(n+1)) - f(f(n));

%o concat([1], vector(166,n,a(n))) \\ _Joerg Arndt_, Jul 06 2013

%o (PARI)

%o f(n) = if(!n,n,numdiv(n));

%o A111407(n) = f(f(n+1)) - f(f(n)); \\ _Antti Karttunen_, Oct 07 2017

%Y Cf. A000005, A111405.

%Y First differences of A010553.

%K sign

%O 0,12

%A _N. J. A. Sloane_, Nov 12 2005

%E Description clarified by _Antti Karttunen_, Oct 07 2017