login
A111400
P(P(n)) - P(P(n-1)), where P(n) = (n+1)*(n+2)*(n+3)/6 (see A000292).
2
0, 3, 31, 251, 1485, 6665, 24073, 73486, 196626, 473595, 1047255, 2157793, 4189991, 7736001, 13676705, 23285020, 38354788, 61359171, 95642751, 145651815, 217207585, 317827433, 457099401, 647115626, 902970550, 1243330075, 1691078103, 2274047181
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
FORMULA
From Chai Wah Wu, May 27 2016: (Start)
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9).
G.f.: x*(x^6 - 8*x^5 + 110*x^4 + 90*x^3 + 80*x^2 + 4*x + 3)/(1 - x)^9. (End)
MATHEMATICA
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 3, 31,
251, 1485, 6665, 24073, 73486, 196626}, 100] (* G. C. Greubel, May 27 2016 *)
CROSSREFS
Sequence in context: A198151 A197231 A334980 * A057972 A221821 A198852
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 11 2005
STATUS
approved