Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Mar 12 2024 21:21:31
%S 1,1,2,6,12,24,48,96,192,384,768,1536,3072,6144,12288,24576,49152,
%T 98304,196608,393216,786432,1572864,3145728,6291456,12582912,25165824,
%U 50331648,100663296,201326592,402653184,805306368,1610612736,3221225472
%N Number of permutations avoiding the patterns {1342, 1432, 2341, 2431, 3142, 3241, 3412, 3421, 4132, 4231, 4312, 4321}; number of strong sorting class based on 1342.
%H Vincenzo Librandi, <a href="/A111286/b111286.txt">Table of n, a(n) for n = 0..1000</a>
%H M. Albert, R. Aldred, M. Atkinson, C Handley, D. Holton, D. McCaughan and H. van Ditmarsch, <a href="https://doi.org/10.37236/1928">Sorting Classes</a>, Elec. J. of Comb., Vol. 12 (2005), R31.
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (2).
%F a(n) = 3*2^(n-2), n>=3.
%F a(n) = 2*a(n-1) for n=3. G.f.: (1-x+2*x^3)/(1-2*x). - _Colin Barker_, Nov 29 2012
%t Table[If[n == 1, 1, If[n == 2, 2, 3*2^(n - 2)]], {n, 32}] (* _Robert G. Wilson v_ *)
%t LinearRecurrence[{2},{1,2,6},40] (* _Harvey P. Dale_, Jul 14 2019 *)
%Y Cf. A003945, A007283, A042950, A098011, A110164 - differs from each by one initial term.
%K nonn,easy
%O 0,3
%A _Len Smiley_, Nov 01 2005
%E a(0)=1 prepended by _Alois P. Heinz_, Mar 12 2024